import argparse import torch import os import json from tqdm import tqdm import shortuuid from tinyllava.utils import * from tinyllava.data import * from tinyllava.model import * from PIL import Image import math def split_list(lst, n): """Split a list into n (roughly) equal-sized chunks""" chunk_size = math.ceil(len(lst) / n) # integer division return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] def get_chunk(lst, n, k): chunks = split_list(lst, n) return chunks[k] def eval_model(args): # Model disable_torch_init() model_path = os.path.expanduser(args.model_path) model, tokenizer, image_processor, context_len = load_pretrained_model(model_path) text_processor = TextPreprocess(tokenizer, args.conv_mode) data_args = model.config image_processor = ImagePreprocess(image_processor, data_args) questions = json.load(open(os.path.expanduser(args.question_file), "r")) questions = get_chunk(questions, args.num_chunks, args.chunk_idx) answers_file = os.path.expanduser(args.answers_file) os.makedirs(os.path.dirname(answers_file), exist_ok=True) ans_file = open(answers_file, "w") model.to(device='cuda') for i, line in enumerate(tqdm(questions)): idx = line["id"] question = line['conversations'][0] question = question['value'].replace('', '').strip() if 'image' in line: image_file = line["image"] image = Image.open(os.path.join(args.image_folder, image_file)) image_sizes = [image.size] image = image_processor(image) images = image.unsqueeze(0).half().cuda() question = '' + '\n' + question else: images = None image_sizes = None if args.single_pred_prompt: question = question + '\n' + "Answer with the option's letter from the given choices directly." msg = Message() msg.add_message(question) result = text_processor(msg.messages, mode='eval') input_ids = result['input_ids'] prompt = result['prompt'] input_ids = input_ids.unsqueeze(0).cuda() with torch.inference_mode(): output_ids = model.generate( input_ids, images=images, image_sizes=image_sizes, do_sample=True if args.temperature > 0 else False, temperature=args.temperature, max_new_tokens=1024, use_cache=True, pad_token_id=tokenizer.pad_token_id ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() ans_id = shortuuid.uuid() ans_file.write(json.dumps({"question_id": idx, "prompt": prompt, "text": outputs, "answer_id": ans_id, "model_id": args.model_path.split('/')[-1], "metadata": {}}) + "\n") ans_file.flush() ans_file.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="facebook/opt-350m") parser.add_argument("--model-base", type=str, default=None) parser.add_argument("--image-folder", type=str, default="") parser.add_argument("--question-file", type=str, default="tables/question.json") parser.add_argument("--answers-file", type=str, default="answer.jsonl") parser.add_argument("--conv-mode", type=str, default="llama") parser.add_argument("--num-chunks", type=int, default=1) parser.add_argument("--chunk-idx", type=int, default=0) parser.add_argument("--temperature", type=float, default=0.2) parser.add_argument("--answer-prompter", action="store_true") parser.add_argument("--single-pred-prompt", action="store_true") parser.add_argument("--image_aspect_ratio", type=str, default='pad') args = parser.parse_args() eval_model(args)