from transformers import PretrainedConfig, LlavaConfig from transformers import CONFIG_MAPPING from transformers import AutoConfig from tinyllava.utils.constants import * class TinyLlavaConfig(PretrainedConfig): model_type = "tinyllava" def __init__( self, llm_model_name_or_path = '', tokenizer_name_or_path = None, vision_model_name_or_path = '', vision_model_name_or_path2 = '', connector_type = None, text_config=None, hidden_size=2048, vocab_size=32000, ignore_index=-100, image_token_index=32000, pad_token = None, pad_token_id = None, tokenizer_padding_side = 'right', tokenizer_model_max_length = 2048, vision_config = None, vision_hidden_size = None, vision_feature_layer = -2, vision_feature_select_strategy = 'patch', image_aspect_ratio = 'square', resampler_hidden_size = None, num_queries = None, num_resampler_layers = None, use_cache = False, cache_dir = None, tokenizer_use_fast = False, tune_type_llm = 'frozen', tune_type_connector = 'frozen', tune_type_vision_tower = 'frozen', tune_vision_tower_from_layer = -1, **kwargs ): self.llm_model_name_or_path = llm_model_name_or_path self.tokenizer_name_or_path = tokenizer_name_or_path or self.llm_model_name_or_path self.vision_model_name_or_path = vision_model_name_or_path self.vision_model_name_or_path2 = vision_model_name_or_path2 self.connector_type = connector_type self.tune_type_llm = tune_type_llm self.tune_type_connector = tune_type_connector self.tune_type_vision_tower = tune_type_vision_tower self.tune_vision_tower_from_layer = tune_vision_tower_from_layer self.ignore_index = IGNORE_INDEX self.image_token_index = IMAGE_TOKEN_INDEX self.pad_token = pad_token self.pad_token_id = pad_token_id self.tokenizer_padding_side = tokenizer_padding_side self.tokenizer_model_max_length = tokenizer_model_max_length self.vision_feature_layer = vision_feature_layer self.vision_feature_select_strategy = vision_feature_select_strategy self.image_aspect_ratio = image_aspect_ratio self.resampler_hidden_size = resampler_hidden_size self.num_queries = num_queries self.num_resampler_layers = num_resampler_layers self.use_cache = use_cache self.cache_dir = cache_dir self.tokenizer_use_fast = tokenizer_use_fast self._load_text_config(text_config) self._load_vision_config(vision_config) super().__init__(**kwargs) def load_from_config(self, config): self.llm_model_name_or_path = getattr(config, 'model_name_or_path', '') self.tokenizer_name_or_path = getattr(config, 'tokenizer_name_or_path', None) or self.llm_model_name_or_path self.vision_model_name_or_path = getattr(config, 'vision_tower', '') self.vision_model_name_or_path2 = getattr(config, 'vision_tower2', '') self.connector_type = getattr(config, 'connector_type', None) self.vision_feature_layer = getattr(config, 'mm_vision_select_layer', -2) self.vision_feature_select_strategy = getattr(config, 'mm_vision_select_feature', "patch") self.image_aspect_ratio = getattr(config, 'image_aspect_ratio', "pad") self.resampler_hidden_size = getattr(config, 'resampler_hidden_size', None) self.num_queries = getattr(config, 'num_queries', None) self.num_resampler_layers = getattr(config, 'num_resampler_layers', None) self.cache_dir = getattr(config, 'cache_dir', None) self.tokenizer_use_fast = getattr(config, 'tokenizer_use_fast', False) self.tokenizer_model_max_length = getattr(config, 'model_max_length', 2048) self.tokenizer_padding_side = getattr(config, 'tokenizer_padding_side', 'right') self._load_text_config() self._load_vision_config() def _load_text_config(self, text_config=None): if self.llm_model_name_or_path is None or self.llm_model_name_or_path == '': self.text_config = CONFIG_MAPPING['llama']() else: self.text_config = AutoConfig.from_pretrained(self.llm_model_name_or_path, trust_remote_code=True) if text_config is not None: self.text_config = self.text_config.from_dict(text_config) self.hidden_size = getattr(self.text_config, 'hidden_size', getattr(self.text_config, 'model_dim', None)) self.vocab_size = getattr(self.text_config, 'vocab_size', None) def _load_vision_config(self, vision_config=None): if self.vision_model_name_or_path is None or self.vision_model_name_or_path == '': self.vision_config = CONFIG_MAPPING['clip_vision_model']( intermediate_size=4096, hidden_size=1024, patch_size=14, image_size=336, num_hidden_layers=24, num_attention_heads=16, vocab_size=32000, projection_dim=768, ) else: self.vision_config = AutoConfig.from_pretrained(self.vision_model_name_or_path.split(':')[-1], trust_remote_code=True) self.vision_config = getattr(self.vision_config, 'vision_config', self.vision_config) if vision_config is not None: self.vision_config = self.vision_config.from_dict(vision_config) self.vision_config.model_name_or_path = self.vision_model_name_or_path.split(':')[-1] self.vision_config.model_name_or_path2 = self.vision_model_name_or_path2.split(':')[-1] self.vision_hidden_size = getattr(self.vision_config, 'hidden_size', None)