import torch import torch.nn as nn from . import register_connector from .base import Connector import torch from einops import rearrange, repeat from einops_exts import rearrange_many from torch import einsum class PerceiverResampler(nn.Module): def __init__(self, config): super().__init__() dim = config.hidden_size depth=config.num_resampler_layers num_latents=config.num_queries self.latents = nn.Parameter(torch.randn(num_latents, dim)) self.layers = nn.ModuleList([]) self.linear = nn.Linear(config.vision_hidden_size, config.hidden_size) for _ in range(depth): self.layers.append( nn.ModuleList( [ PerceiverAttention(dim=dim, dim_head=64, heads=8), FeedForward(dim=dim, mult=4), ] ) ) self.norm = nn.LayerNorm(dim) def forward(self, x): b, v = x.shape[:2] x = self.linear(x) # blocks latents = repeat(self.latents, "n d -> b T n d", b=b, T=1) x = x.unsqueeze(1) for attn, ff in self.layers: latents = attn(x, latents) + latents latents = ff(latents) + latents return self.norm(latents).squeeze(1) @register_connector('resampler') class ResamplerConnector(Connector): def __init__(self, config): super().__init__() self._connector = PerceiverResampler(config) # =================================resampler related ================================= def exists(val): return val is not None def FeedForward(dim, mult=4): inner_dim = int(dim * mult) return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, inner_dim, bias=False), nn.GELU(), nn.Linear(inner_dim, dim, bias=False), ) class PerceiverAttention(nn.Module): def __init__(self, *, dim, dim_head=64, heads=8): super().__init__() self.scale = dim_head**-0.5 self.heads = heads inner_dim = dim_head * heads self.norm_media = nn.LayerNorm(dim) self.norm_latents = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) def forward(self, x, latents): """ Args: x (torch.Tensor): image features shape (b, T, n1, D) latent (torch.Tensor): latent features shape (b, T, n2, D) """ x = self.norm_media(x) latents = self.norm_latents(latents) h = self.heads q = self.to_q(latents) kv_input = torch.cat((x, latents), dim=-2) k, v = self.to_kv(kv_input).chunk(2, dim=-1) q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h) q = q * self.scale # attention sim = einsum("... i d, ... j d -> ... i j", q, k) sim = sim - sim.amax(dim=-1, keepdim=True).detach() attn = sim.softmax(dim=-1) out = einsum("... i j, ... j d -> ... i d", attn, v) out = rearrange(out, "b h t n d -> b t n (h d)", h=h) return self.to_out(out)