import logging import os import sys import torch.distributed as dist root_logger = None def print_rank0(*args): local_rank = dist.get_rank() if local_rank == 0: print(*args) def logger_setting(save_dir=None): global root_logger if root_logger is not None: return root_logger else: root_logger = logging.getLogger() root_logger.setLevel(logging.INFO) ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s | %(levelname)s: %(message)s") ch.setFormatter(formatter) root_logger.addHandler(ch) if save_dir: if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) save_file = os.path.join(save_dir, 'log.txt') if not os.path.exists(save_file): os.system(f"touch {save_file}") fh = logging.FileHandler(save_file, mode='a') fh.setLevel(logging.INFO) fh.setFormatter(formatter) root_logger.addHandler(fh) return root_logger def log(*args): global root_logger local_rank = dist.get_rank() if local_rank == 0: root_logger.info(*args) def log_trainable_params(model): total_params = sum(p.numel() for p in model.parameters()) total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) log(f'Total Parameters: {total_params}, Total Trainable Parameters: {total_trainable_params}') log(f'Trainable Parameters:') for name, param in model.named_parameters(): if param.requires_grad: print_rank0(f"{name}: {param.numel()} parameters")