from tinyllava.eval.run_tiny_llava import eval_model from transformers import AutoTokenizer, AutoModelForCausalLM from tinyllava_visualizer.tinyllava_visualizer import * prompt = "What are the things I should be cautious about when I visit here?" image_file = "https://llava-vl.github.io/static/images/view.jpg" model = AutoModelForCausalLM.from_pretrained("/mnt/hwfile/opendatalab/wensiwei/checkpoint/TinyLLaVA-Phi-2-SigLIP-3.1B", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("/mnt/hwfile/opendatalab/wensiwei/checkpoint/TinyLLaVA-Phi-2-SigLIP-3.1B", trust_remote_code=True) model.tokenizer = tokenizer args = type('Args', (), { "model_path": None, "model": model, "query": prompt, "conv_mode": "phi", # the same as conv_version in the training stage. Different LLMs have different conv_mode/conv_version, please replace it "image_file": image_file, "sep": ",", "temperature": 0, "top_p": None, "num_beams": 1, "max_new_tokens": 512 })() monitor = Monitor(args, model, llm_layers_index=31) eval_model(args) monitor.get_output(output_dir='results/')