Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from urllib.parse import urlparse
|
3 |
+
import requests
|
4 |
+
import time
|
5 |
+
import os
|
6 |
+
|
7 |
+
from utils.gradio_helpers import parse_outputs, process_outputs
|
8 |
+
|
9 |
+
inputs = []
|
10 |
+
inputs.append(gr.Image(
|
11 |
+
label="Target Image", type="filepath"
|
12 |
+
))
|
13 |
+
|
14 |
+
inputs.append(gr.Image(
|
15 |
+
label="Swap Image", type="filepath"
|
16 |
+
))
|
17 |
+
|
18 |
+
names = ['target_image', 'swap_image']
|
19 |
+
|
20 |
+
outputs = []
|
21 |
+
outputs.append(gr.Image())
|
22 |
+
|
23 |
+
expected_outputs = len(outputs)
|
24 |
+
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
|
25 |
+
headers = {'Content-Type': 'application/json'}
|
26 |
+
|
27 |
+
payload = {"input": {}}
|
28 |
+
|
29 |
+
|
30 |
+
base_url = "http://0.0.0.0:7860"
|
31 |
+
for i, key in enumerate(names):
|
32 |
+
value = args[i]
|
33 |
+
if value and (os.path.exists(str(value))):
|
34 |
+
value = f"{base_url}/file=" + value
|
35 |
+
if value is not None and value != "":
|
36 |
+
payload["input"][key] = value
|
37 |
+
|
38 |
+
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)
|
39 |
+
|
40 |
+
|
41 |
+
if response.status_code == 201:
|
42 |
+
follow_up_url = response.json()["urls"]["get"]
|
43 |
+
response = requests.get(follow_up_url, headers=headers)
|
44 |
+
while response.json()["status"] != "succeeded":
|
45 |
+
if response.json()["status"] == "failed":
|
46 |
+
raise gr.Error("The submission failed!")
|
47 |
+
response = requests.get(follow_up_url, headers=headers)
|
48 |
+
time.sleep(1)
|
49 |
+
if response.status_code == 200:
|
50 |
+
json_response = response.json()
|
51 |
+
#If the output component is JSON return the entire output response
|
52 |
+
if(outputs[0].get_config()["name"] == "json"):
|
53 |
+
return json_response["output"]
|
54 |
+
predict_outputs = parse_outputs(json_response["output"])
|
55 |
+
processed_outputs = process_outputs(predict_outputs)
|
56 |
+
difference_outputs = expected_outputs - len(processed_outputs)
|
57 |
+
# If less outputs than expected, hide the extra ones
|
58 |
+
if difference_outputs > 0:
|
59 |
+
extra_outputs = [gr.update(visible=False)] * difference_outputs
|
60 |
+
processed_outputs.extend(extra_outputs)
|
61 |
+
# If more outputs than expected, cap the outputs to the expected number
|
62 |
+
elif difference_outputs < 0:
|
63 |
+
processed_outputs = processed_outputs[:difference_outputs]
|
64 |
+
|
65 |
+
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0]
|
66 |
+
else:
|
67 |
+
if(response.status_code == 409):
|
68 |
+
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.")
|
69 |
+
raise gr.Error(f"The submission failed! Error: {response.status_code}")
|
70 |
+
|
71 |
+
title = "Demo for face-swap cog image by omniedgeio"
|
72 |
+
model_description = "Face Swap"
|
73 |
+
|
74 |
+
app = gr.Interface(
|
75 |
+
fn=predict,
|
76 |
+
inputs=inputs,
|
77 |
+
outputs=outputs,
|
78 |
+
title=title,
|
79 |
+
description=model_description,
|
80 |
+
allow_flagging="never",
|
81 |
+
)
|
82 |
+
app.launch(share=True)
|