Spaces:
Runtime error
Runtime error
File size: 7,324 Bytes
209a278 8147977 39ba7a3 783f9ad 500f05d 209a278 0d590d3 209a278 8147977 39ba7a3 209a278 783f9ad 39ba7a3 783f9ad 209a278 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import requests
from io import BytesIO
from flask import Flask, request, jsonify
from gradio_client import Client
from huggingface_hub import create_repo, upload_file
app = Flask(__name__)
# Função para chamar a API de hospedagem de imagens
def host_image(endpoint, image_path):
api_url = "https://wosocial.bubbleapps.io/version-test/api/1.1/wf/save"
image_url = f"{endpoint}/file={image_path}"
files = {'file': open(image_url, 'rb')}
response = requests.post(api_url, files=files)
if response.status_code == 200:
return response.json()["response"]["result"]
else:
return None
@app.route('/run', methods=['POST'])
def run_model():
# Obter parâmetros da consulta da URL
endpoint = request.args.get('endpoint', default='https://pierroromeu-zbilatuca2testzz.hf.space')
prompt = request.args.get('prompt', default='Hello!!')
negative_prompt = request.args.get('negative_prompt', default='Hello!!')
prompt_2 = request.args.get('prompt_2', default='Hello!!')
negative_prompt_2 = request.args.get('negative_prompt_2', default='Hello!!')
use_negative_prompt = request.args.get('use_negative_prompt', type=bool, default=True)
use_prompt_2 = request.args.get('use_prompt_2', type=bool, default=True)
use_negative_prompt_2 = request.args.get('use_negative_prompt_2', type=bool, default=False)
seed = request.args.get('seed', type=int, default=0)
width = request.args.get('width', type=int, default=256)
height = request.args.get('height', type=int, default=256)
guidance_scale = request.args.get('guidance_scale', type=float, default=5.5)
num_inference_steps = request.args.get('num_inference_steps', type=int, default=50)
strength = request.args.get('strength', type=float, default=0.7)
use_vae_str = request.args.get('use_vae', default='false') # Obtém use_vae como string
use_vae = use_vae_str.lower() == 'true' # Converte para booleano
use_lora_str = request.args.get('use_lora', default='false') # Obtém use_lora como string
use_lora = use_lora_str.lower() == 'true' # Converte para booleano
use_img2img_str = request.args.get('use_img2img', default='false') # Obtém use_vae como string
use_img2img = use_img2img_str.lower() == 'true' # Converte para booleano
model = request.args.get('model', default='stabilityai/stable-diffusion-xl-base-1.0')
vaecall = request.args.get('vaecall', default='madebyollin/sdxl-vae-fp16-fix')
lora = request.args.get('lora', default='amazonaws-la/sdxl')
lora_scale = request.args.get('lora_scale', type=float, default=0.7)
url = request.args.get('url', default='https://example.com/image.png')
# Chamar a API Gradio
client = Client(endpoint)
result = client.predict(
prompt, negative_prompt, prompt_2, negative_prompt_2,
use_negative_prompt, use_prompt_2, use_negative_prompt_2,
seed, width, height,
guidance_scale,
num_inference_steps,
strength,
use_vae,
use_lora,
model,
vaecall,
lora,
lora_scale,
use_img2img,
url,
api_name="/run"
)
return jsonify(result)
@app.route('/predict', methods=['POST'])
def predict_gan():
# Obter parâmetros da consulta da URL
endpoint = request.args.get('endpoint', default='https://pierroromeu-gfpgan.hf.space/--replicas/dgwcd/')
hf_token = request.args.get('hf_token', default='')
filepath = request.args.get('filepath', default='')
version = request.args.get('version', default='v1.4')
rescaling_factor = request.args.get('rescaling_factor', type=float, default=2.0)
# Chamar a API Gradio
client = Client(endpoint, hf_token=hf_token)
result = client.predict(
filepath,
version,
rescaling_factor,
api_name="/predict"
)
return jsonify(result)
@app.route('/faceswapper', methods=['GET'])
def faceswapper():
# Obter parâmetros da consulta da URL
endpoint = request.args.get('endpoint', default='https://pierroromeu-faceswapper.hf.space/--replicas/u42x7/')
user_photo = request.args.get('user_photo', default='')
result_photo = request.args.get('result_photo', default='')
# Chamar a API Gradio
client = Client(endpoint, upload_files=True)
result_path = client.predict(
user_photo,
result_photo,
api_name="/predict"
)
# Hospedar a imagem e obter a URL
hosted_url = host_image(endpoint, result_path)
if hosted_url:
return jsonify({"result_url": hosted_url})
else:
return jsonify({"error": "Falha ao hospedar a imagem."}), 500
@app.route('/train', methods=['POST'])
def answer():
# Obter parâmetros da consulta da URL
token = request.args.get('token', default='')
endpoint = request.args.get('endpoint', default='https://pierroromeu-gfpgan.hf.space/--replicas/dgwcd/')
dataset_id=request.args.get('dataset_id', default='')
output_model_folder_name=request.args.get('output_model_folder_name', default='')
concept_prompt=request.args.get('concept_prompt', default='')
max_training_steps=request.args.get('max_training_steps', type=int, default=0)
checkpoints_steps=request.args.get('checkpoints_steps', type=int, default=0)
remove_gpu_after_training_str = request.args.get('remove_gpu_after_training', default='false') # Obtém como string
remove_gpu_after_training = remove_gpu_after_training_str.lower() == 'true' # Converte para booleano
# Chamar a API Gradio
client = Client(endpoint, hf_token=token)
result = client.predict(
dataset_id,
output_model_folder_name,
concept_prompt,
max_training_steps,
checkpoints_steps,
remove_gpu_after_training,
api_name="/main"
)
return jsonify(result)
@app.route('/verify', methods=['GET'])
# ‘/’ URL is bound with hello_world() function.
def hello_world():
return jsonify('Check')
@app.route('/upload_model', methods=['POST'])
def upload_model():
# Parâmetros
file_name= request.args.get('file_name', default='')
repo = request.args.get('repo', default='')
url = request.args.get('url', default='')
token = request.args.get('token', default='')
try:
# Crie o repositório
repo_id = repo
create_repo(repo_id=repo_id, token=token)
# Faça o download do conteúdo da URL em memória
response = requests.get(url)
if response.status_code == 200:
# Obtenha o conteúdo do arquivo em bytes
file_content = response.content
# Crie um objeto de arquivo em memória
file_obj = BytesIO(file_content)
# Faça o upload do arquivo
upload_file(
path_or_fileobj=file_obj,
path_in_repo=file_name,
repo_id=repo_id,
token=token
)
# Mensagem de sucesso
return jsonify({"message": "Sucess"})
else:
return jsonify({"error": "Failed"}), 500
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860) |