testzone1 / app.py
craftgamesnetwork's picture
Update app.py
1b1003b verified
raw
history blame
11.1 kB
#!/usr/bin/env python
from __future__ import annotations
import requests
import os
import random
import gradio as gr
import numpy as np
import spaces
import torch
import cv2
from PIL import Image
from io import BytesIO
from diffusers.utils import load_image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting
DESCRIPTION = "# Run any LoRA or SD Model"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>⚠️ This space is running on the CPU. This demo doesn't work on CPU 😞! Run on a GPU by duplicating this space or test our website for free and unlimited by <a href='https://squaadai.com'>clicking here</a>, which provides these and more options.</p>"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_IMG2IMG", "1") == "1"
ENABLE_USE_INPAINTING = os.getenv("ENABLE_USE_INPAINTING", "1") == "1"
ENABLE_USE_CONTROLNET = os.getenv("ENABLE_USE_CONTROLNET", "1") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
num_inference_steps_base: int = 25,
strength_img2img: float = 0.7,
use_vae: bool = False,
use_lora: bool = False,
model = 'stabilityai/stable-diffusion-xl-base-1.0',
vaecall = 'madebyollin/sdxl-vae-fp16-fix',
lora = '',
lora_scale: float = 0.7,
use_img2img: bool = False,
use_inpainting: bool = False,
use_controlnet: bool = False,
url = '',
img_url = '',
mask_url = '',
):
if torch.cuda.is_available():
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16)
image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
np_image = np.array(image)
# get canny image
np_image = cv2.Canny(np_image, 100, 200)
np_image = np_image[:, :, None]
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
canny_image = Image.fromarray(np_image)
if use_lora:
pipe.load_lora_weights(lora)
pipe.fuse_lora(lora_scale)
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
if not use_prompt_2:
prompt_2 = None # type: ignore
if not use_negative_prompt_2:
negative_prompt_2 = None # type: ignore
if use_controlnet:
image = pipe(
"futuristic-looking woman",
num_inference_steps=20,
generator=generator,
image=image,
control_image=canny_image,
).images[0]
return image
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
gr.HTML(
"<p><center>πŸ“™ For any additional support, join our <a href='https://discord.gg/JprjXpjt9K'>Discord</a></center></p>"
)
gr.Markdown(DESCRIPTION, elem_id="description")
with gr.Group():
model = gr.Text(label='Model', placeholder='e.g. stabilityai/stable-diffusion-xl-base-1.0')
vaecall = gr.Text(label='VAE', placeholder='e.g. madebyollin/sdxl-vae-fp16-fix')
lora = gr.Text(label='LoRA', placeholder='e.g. nerijs/pixel-art-xl')
lora_scale = gr.Slider(
info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
label="Lora Scale",
minimum=0.01,
maximum=1,
step=0.01,
value=0.7,
)
url = gr.Text(label='URL (Img2Img)', placeholder='e.g https://example.com/image.png')
img_url = gr.Text(label='URL (Image Inpainting)', placeholder='e.g https://example.com/image.png')
mask_url = gr.Text(label='URL (Mask Image Inpainting)', placeholder='e.g https://example.com/image.png')
with gr.Row():
prompt = gr.Text(
placeholder="Input prompt",
label="Prompt",
show_label=False,
max_lines=1,
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_controlnet = gr.Checkbox(label='Use Controlnet', value=False, visible=ENABLE_USE_CONTROLNET)
use_inpainting = gr.Checkbox(label='Use Inpainting', value=False, visible=ENABLE_USE_INPAINTING)
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
negative_prompt = gr.Text(
placeholder="Input Negative Prompt",
label="Negative prompt",
max_lines=1,
visible=False,
)
prompt_2 = gr.Text(
placeholder="Input Prompt 2",
label="Prompt 2",
max_lines=1,
visible=False,
)
negative_prompt_2 = gr.Text(
placeholder="Input Negative Prompt 2",
label="Negative prompt 2",
max_lines=1,
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale_base = gr.Slider(
info="Scale for classifier-free guidance",
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
with gr.Row():
num_inference_steps_base = gr.Slider(
info="Number of denoising steps",
label="Number of inference steps",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row():
strength_img2img = gr.Slider(
info="Strength for Img2Img",
label="Strength",
minimum=0,
maximum=1,
step=0.01,
value=0.7,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
use_vae.change(
fn=lambda x: gr.update(visible=x),
inputs=use_vae,
outputs=vaecall,
queue=False,
api_name=False,
)
use_lora.change(
fn=lambda x: gr.update(visible=x),
inputs=use_lora,
outputs=lora,
queue=False,
api_name=False,
)
use_img2img.change(
fn=lambda x: gr.update(visible=x),
inputs=use_img2img,
outputs=url,
queue=False,
api_name=False,
)
use_inpainting.change(
fn=lambda x: gr.update(visible=x),
inputs=use_inpainting,
outputs=img_url,
queue=False,
api_name=False,
)
use_inpainting.change(
fn=lambda x: gr.update(visible=x),
inputs=use_inpainting,
outputs=mask_url,
queue=False,
api_name=False,
)
use_controlnet.change(
fn=lambda x: gr.update(visible=x),
inputs=use_controlnet,
outputs=img_url,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale_base,
num_inference_steps_base,
strength_img2img,
use_vae,
use_lora,
model,
vaecall,
lora,
lora_scale,
use_img2img,
use_inpainting,
url,
img_url,
mask_url,
use_controlnet,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()