Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ import spaces
|
|
12 |
import torch
|
13 |
from PIL import Image
|
14 |
from io import BytesIO
|
15 |
-
from diffusers import AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image
|
16 |
|
17 |
DESCRIPTION = "# Run any LoRA or SD Model"
|
18 |
if not torch.cuda.is_available():
|
@@ -61,24 +61,20 @@ def generate(
|
|
61 |
if not use_img2img:
|
62 |
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
63 |
pipe.enable_model_cpu_offload()
|
64 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
65 |
|
66 |
if use_vae:
|
67 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
68 |
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
69 |
pipe.enable_model_cpu_offload()
|
70 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
71 |
|
72 |
if use_img2img:
|
73 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, torch_dtype=torch.float16)
|
74 |
pipe.enable_model_cpu_offload()
|
75 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
76 |
|
77 |
if use_vae:
|
78 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
79 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
80 |
pipe.enable_model_cpu_offload()
|
81 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
82 |
|
83 |
response = requests.get(url)
|
84 |
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
|
|
12 |
import torch
|
13 |
from PIL import Image
|
14 |
from io import BytesIO
|
15 |
+
from diffusers import AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image
|
16 |
|
17 |
DESCRIPTION = "# Run any LoRA or SD Model"
|
18 |
if not torch.cuda.is_available():
|
|
|
61 |
if not use_img2img:
|
62 |
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
63 |
pipe.enable_model_cpu_offload()
|
|
|
64 |
|
65 |
if use_vae:
|
66 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
67 |
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
68 |
pipe.enable_model_cpu_offload()
|
|
|
69 |
|
70 |
if use_img2img:
|
71 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, torch_dtype=torch.float16)
|
72 |
pipe.enable_model_cpu_offload()
|
|
|
73 |
|
74 |
if use_vae:
|
75 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
76 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
77 |
pipe.enable_model_cpu_offload()
|
|
|
78 |
|
79 |
response = requests.get(url)
|
80 |
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|