Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -60,18 +60,18 @@ def generate(
|
|
60 |
|
61 |
if not use_img2img:
|
62 |
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
63 |
-
|
64 |
if use_vae:
|
65 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
66 |
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
67 |
-
|
68 |
if use_img2img:
|
69 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, torch_dtype=torch.float16)
|
70 |
-
|
71 |
if use_vae:
|
72 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
73 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
74 |
-
|
75 |
response = requests.get(url)
|
76 |
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
77 |
init_image = init_image.resize((width, height))
|
@@ -82,6 +82,8 @@ def generate(
|
|
82 |
|
83 |
else:
|
84 |
pipe.to(device)
|
|
|
|
|
85 |
|
86 |
generator = torch.Generator().manual_seed(seed)
|
87 |
|
|
|
60 |
|
61 |
if not use_img2img:
|
62 |
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
63 |
+
|
64 |
if use_vae:
|
65 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
66 |
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
67 |
+
|
68 |
if use_img2img:
|
69 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, torch_dtype=torch.float16)
|
70 |
+
|
71 |
if use_vae:
|
72 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
73 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
74 |
+
|
75 |
response = requests.get(url)
|
76 |
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
77 |
init_image = init_image.resize((width, height))
|
|
|
82 |
|
83 |
else:
|
84 |
pipe.to(device)
|
85 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
86 |
+
pipe.unet.set_default_attn_processor()
|
87 |
|
88 |
generator = torch.Generator().manual_seed(seed)
|
89 |
|