Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ import spaces
|
|
12 |
import torch
|
13 |
from PIL import Image
|
14 |
from io import BytesIO
|
15 |
-
from diffusers import AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image
|
16 |
|
17 |
DESCRIPTION = "# Run any LoRA or SD Model"
|
18 |
if not torch.cuda.is_available():
|
@@ -25,7 +25,8 @@ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
|
25 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
26 |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
27 |
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
28 |
-
ENABLE_USE_IMG2IMG = os.getenv("
|
|
|
29 |
|
30 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
31 |
|
@@ -57,7 +58,10 @@ def generate(
|
|
57 |
lora = '',
|
58 |
lora_scale: float = 0.7,
|
59 |
use_img2img: bool = False,
|
|
|
60 |
url = '',
|
|
|
|
|
61 |
):
|
62 |
if torch.cuda.is_available():
|
63 |
|
@@ -74,11 +78,17 @@ def generate(
|
|
74 |
if use_vae:
|
75 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
76 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
77 |
-
|
|
|
|
|
|
|
78 |
response = requests.get(url)
|
79 |
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
80 |
init_image = init_image.resize((width, height))
|
81 |
|
|
|
|
|
|
|
82 |
if use_lora:
|
83 |
pipe.load_lora_weights(lora)
|
84 |
pipe.fuse_lora(lora_scale)
|
@@ -101,20 +111,21 @@ def generate(
|
|
101 |
if not use_negative_prompt_2:
|
102 |
negative_prompt_2 = None # type: ignore
|
103 |
|
104 |
-
if
|
105 |
-
|
106 |
prompt=prompt,
|
|
|
|
|
|
|
107 |
negative_prompt=negative_prompt,
|
108 |
prompt_2=prompt_2,
|
109 |
negative_prompt_2=negative_prompt_2,
|
110 |
-
width=width,
|
111 |
-
height=height,
|
112 |
guidance_scale=guidance_scale_base,
|
113 |
num_inference_steps=num_inference_steps_base,
|
114 |
generator=generator,
|
115 |
-
output_type="pil",
|
116 |
).images[0]
|
117 |
-
|
|
|
118 |
images = pipe(
|
119 |
prompt=prompt,
|
120 |
image=init_image,
|
@@ -130,6 +141,19 @@ def generate(
|
|
130 |
output_type="pil",
|
131 |
).images[0]
|
132 |
return images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
examples = [
|
135 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
@@ -166,6 +190,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
166 |
result = gr.Image(label="Result", show_label=False)
|
167 |
with gr.Accordion("Advanced options", open=False):
|
168 |
with gr.Row():
|
|
|
169 |
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
|
170 |
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
|
171 |
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
|
@@ -293,6 +318,20 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
293 |
queue=False,
|
294 |
api_name=False,
|
295 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
gr.on(
|
298 |
triggers=[
|
@@ -330,6 +369,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
330 |
lora,
|
331 |
lora_scale,
|
332 |
use_img2img,
|
|
|
333 |
url,
|
334 |
],
|
335 |
outputs=result,
|
|
|
12 |
import torch
|
13 |
from PIL import Image
|
14 |
from io import BytesIO
|
15 |
+
from diffusers import AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting
|
16 |
|
17 |
DESCRIPTION = "# Run any LoRA or SD Model"
|
18 |
if not torch.cuda.is_available():
|
|
|
25 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
26 |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
27 |
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
28 |
+
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_IMG2IMG", "1") == "1"
|
29 |
+
ENABLE_USE_INPAINTING = os.getenv("ENABLE_USE_INPAINTING", "1") == "1"
|
30 |
|
31 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
|
|
|
58 |
lora = '',
|
59 |
lora_scale: float = 0.7,
|
60 |
use_img2img: bool = False,
|
61 |
+
use_inpainting: bool = False,
|
62 |
url = '',
|
63 |
+
img_url = '',
|
64 |
+
mask_url = '',
|
65 |
):
|
66 |
if torch.cuda.is_available():
|
67 |
|
|
|
78 |
if use_vae:
|
79 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
80 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
81 |
+
|
82 |
+
if use_inpainting:
|
83 |
+
pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16)
|
84 |
+
|
85 |
response = requests.get(url)
|
86 |
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
87 |
init_image = init_image.resize((width, height))
|
88 |
|
89 |
+
img_url = download_image(img_url)
|
90 |
+
mask_image = download_image(mask_url)
|
91 |
+
|
92 |
if use_lora:
|
93 |
pipe.load_lora_weights(lora)
|
94 |
pipe.fuse_lora(lora_scale)
|
|
|
111 |
if not use_negative_prompt_2:
|
112 |
negative_prompt_2 = None # type: ignore
|
113 |
|
114 |
+
if use_inpainting:
|
115 |
+
images = pipe(
|
116 |
prompt=prompt,
|
117 |
+
image=img_url,
|
118 |
+
mask_image=mask_url,
|
119 |
+
strength=strength_img2img,
|
120 |
negative_prompt=negative_prompt,
|
121 |
prompt_2=prompt_2,
|
122 |
negative_prompt_2=negative_prompt_2,
|
|
|
|
|
123 |
guidance_scale=guidance_scale_base,
|
124 |
num_inference_steps=num_inference_steps_base,
|
125 |
generator=generator,
|
|
|
126 |
).images[0]
|
127 |
+
return images
|
128 |
+
if use_img2img:
|
129 |
images = pipe(
|
130 |
prompt=prompt,
|
131 |
image=init_image,
|
|
|
141 |
output_type="pil",
|
142 |
).images[0]
|
143 |
return images
|
144 |
+
else:
|
145 |
+
return pipe(
|
146 |
+
prompt=prompt,
|
147 |
+
negative_prompt=negative_prompt,
|
148 |
+
prompt_2=prompt_2,
|
149 |
+
negative_prompt_2=negative_prompt_2,
|
150 |
+
width=width,
|
151 |
+
height=height,
|
152 |
+
guidance_scale=guidance_scale_base,
|
153 |
+
num_inference_steps=num_inference_steps_base,
|
154 |
+
generator=generator,
|
155 |
+
output_type="pil",
|
156 |
+
).images[0]
|
157 |
|
158 |
examples = [
|
159 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
|
|
190 |
result = gr.Image(label="Result", show_label=False)
|
191 |
with gr.Accordion("Advanced options", open=False):
|
192 |
with gr.Row():
|
193 |
+
use_inpainting = gr.Checkbox(label='Use Inpainting', value=False, visible=ENABLE_USE_INPAINTING)
|
194 |
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
|
195 |
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
|
196 |
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
|
|
|
318 |
queue=False,
|
319 |
api_name=False,
|
320 |
)
|
321 |
+
use_inpainting.change(
|
322 |
+
fn=lambda x: gr.update(visible=x),
|
323 |
+
inputs=use_inpainting,
|
324 |
+
outputs=img_url,
|
325 |
+
queue=False,
|
326 |
+
api_name=False,
|
327 |
+
)
|
328 |
+
use_inpainting.change(
|
329 |
+
fn=lambda x: gr.update(visible=x),
|
330 |
+
inputs=use_inpainting,
|
331 |
+
outputs=mask_url,
|
332 |
+
queue=False,
|
333 |
+
api_name=False,
|
334 |
+
)
|
335 |
|
336 |
gr.on(
|
337 |
triggers=[
|
|
|
369 |
lora,
|
370 |
lora_scale,
|
371 |
use_img2img,
|
372 |
+
use_inpainting
|
373 |
url,
|
374 |
],
|
375 |
outputs=result,
|