Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -59,18 +59,30 @@ def generate(
|
|
59 |
if torch.cuda.is_available():
|
60 |
|
61 |
if not use_img2img:
|
62 |
-
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
|
|
|
|
|
|
63 |
|
64 |
if use_vae:
|
65 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
66 |
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
|
|
|
|
|
|
67 |
|
68 |
if use_img2img:
|
69 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, torch_dtype=torch.float16)
|
70 |
-
|
|
|
|
|
|
|
71 |
if use_vae:
|
72 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
73 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
|
|
|
|
|
|
74 |
|
75 |
response = requests.get(url)
|
76 |
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
@@ -82,7 +94,6 @@ def generate(
|
|
82 |
|
83 |
else:
|
84 |
pipe.to(device)
|
85 |
-
pipe.unet.set_default_attn_processor()
|
86 |
|
87 |
generator = torch.Generator().manual_seed(seed)
|
88 |
|
|
|
59 |
if torch.cuda.is_available():
|
60 |
|
61 |
if not use_img2img:
|
62 |
+
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
63 |
+
pipe.enable_model_cpu_offload()
|
64 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
65 |
+
pipe.unet.set_default_attn_processor()
|
66 |
|
67 |
if use_vae:
|
68 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
69 |
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
70 |
+
pipe.enable_model_cpu_offload()
|
71 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
72 |
+
pipe.unet.set_default_attn_processor()
|
73 |
|
74 |
if use_img2img:
|
75 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, torch_dtype=torch.float16)
|
76 |
+
pipe.enable_model_cpu_offload()
|
77 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
78 |
+
pipe.unet.set_default_attn_processor()
|
79 |
+
|
80 |
if use_vae:
|
81 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
82 |
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
83 |
+
pipe.enable_model_cpu_offload()
|
84 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
85 |
+
pipe.unet.set_default_attn_processor()
|
86 |
|
87 |
response = requests.get(url)
|
88 |
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
|
|
94 |
|
95 |
else:
|
96 |
pipe.to(device)
|
|
|
97 |
|
98 |
generator = torch.Generator().manual_seed(seed)
|
99 |
|