Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,11 +10,10 @@ import gradio as gr
|
|
10 |
import numpy as np
|
11 |
import spaces
|
12 |
import torch
|
13 |
-
import cv2
|
14 |
from PIL import Image
|
15 |
from io import BytesIO
|
16 |
from diffusers.utils import load_image
|
17 |
-
from diffusers import
|
18 |
|
19 |
DESCRIPTION = "# Run any LoRA or SD Model"
|
20 |
if not torch.cuda.is_available():
|
@@ -28,7 +27,6 @@ ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
|
28 |
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
29 |
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_IMG2IMG", "1") == "1"
|
30 |
ENABLE_USE_INPAINTING = os.getenv("ENABLE_USE_INPAINTING", "1") == "1"
|
31 |
-
ENABLE_USE_CONTROLNET = os.getenv("ENABLE_USE_CONTROLNET", "1") == "1"
|
32 |
|
33 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
34 |
|
@@ -61,23 +59,39 @@ def generate(
|
|
61 |
lora_scale: float = 0.7,
|
62 |
use_img2img: bool = False,
|
63 |
use_inpainting: bool = False,
|
64 |
-
use_controlnet: bool = False,
|
65 |
url = '',
|
66 |
img_url = '',
|
67 |
mask_url = '',
|
68 |
):
|
69 |
if torch.cuda.is_available():
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
if ENABLE_CPU_OFFLOAD:
|
83 |
pipe.enable_model_cpu_offload()
|
@@ -97,15 +111,51 @@ def generate(
|
|
97 |
if not use_negative_prompt_2:
|
98 |
negative_prompt_2 = None # type: ignore
|
99 |
|
100 |
-
if
|
101 |
image = pipe(
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
generator=generator,
|
105 |
-
image=image,
|
106 |
-
control_image=canny_image,
|
107 |
).images[0]
|
108 |
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
111 |
gr.HTML(
|
@@ -139,7 +189,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
139 |
result = gr.Image(label="Result", show_label=False)
|
140 |
with gr.Accordion("Advanced options", open=False):
|
141 |
with gr.Row():
|
142 |
-
use_controlnet = gr.Checkbox(label='Use Controlnet', value=False, visible=ENABLE_USE_CONTROLNET)
|
143 |
use_inpainting = gr.Checkbox(label='Use Inpainting', value=False, visible=ENABLE_USE_INPAINTING)
|
144 |
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
|
145 |
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
|
@@ -274,13 +323,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
274 |
queue=False,
|
275 |
api_name=False,
|
276 |
)
|
277 |
-
use_controlnet.change(
|
278 |
-
fn=lambda x: gr.update(visible=x),
|
279 |
-
inputs=use_controlnet,
|
280 |
-
outputs=img_url,
|
281 |
-
queue=False,
|
282 |
-
api_name=False,
|
283 |
-
)
|
284 |
|
285 |
gr.on(
|
286 |
triggers=[
|
@@ -322,7 +364,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
|
322 |
url,
|
323 |
img_url,
|
324 |
mask_url,
|
325 |
-
use_controlnet,
|
326 |
],
|
327 |
outputs=result,
|
328 |
api_name="run",
|
|
|
10 |
import numpy as np
|
11 |
import spaces
|
12 |
import torch
|
|
|
13 |
from PIL import Image
|
14 |
from io import BytesIO
|
15 |
from diffusers.utils import load_image
|
16 |
+
from diffusers import AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting
|
17 |
|
18 |
DESCRIPTION = "# Run any LoRA or SD Model"
|
19 |
if not torch.cuda.is_available():
|
|
|
27 |
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
28 |
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_IMG2IMG", "1") == "1"
|
29 |
ENABLE_USE_INPAINTING = os.getenv("ENABLE_USE_INPAINTING", "1") == "1"
|
|
|
30 |
|
31 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
|
|
|
59 |
lora_scale: float = 0.7,
|
60 |
use_img2img: bool = False,
|
61 |
use_inpainting: bool = False,
|
|
|
62 |
url = '',
|
63 |
img_url = '',
|
64 |
mask_url = '',
|
65 |
):
|
66 |
if torch.cuda.is_available():
|
67 |
+
|
68 |
+
if not use_img2img:
|
69 |
+
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
70 |
+
|
71 |
+
if use_vae:
|
72 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
73 |
+
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
74 |
+
|
75 |
+
if use_img2img:
|
76 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(model, torch_dtype=torch.float16)
|
77 |
|
78 |
+
if use_vae:
|
79 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
80 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
81 |
+
|
82 |
+
if use_inpainting:
|
83 |
+
pipe = AutoPipelineForInpainting.from_pretrained(model, torch_dtype=torch.float16)
|
84 |
|
85 |
+
response = requests.get(url)
|
86 |
+
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
87 |
+
init_image = init_image.resize((width, height))
|
88 |
+
|
89 |
+
image_init = load_image(img_url)
|
90 |
+
mask_image = load_image(mask_url)
|
91 |
+
|
92 |
+
if use_lora:
|
93 |
+
pipe.load_lora_weights(lora)
|
94 |
+
pipe.fuse_lora(lora_scale)
|
95 |
|
96 |
if ENABLE_CPU_OFFLOAD:
|
97 |
pipe.enable_model_cpu_offload()
|
|
|
111 |
if not use_negative_prompt_2:
|
112 |
negative_prompt_2 = None # type: ignore
|
113 |
|
114 |
+
if use_inpainting:
|
115 |
image = pipe(
|
116 |
+
prompt=prompt,
|
117 |
+
image=image_init,
|
118 |
+
mask_image=mask_image,
|
119 |
+
strength=strength_img2img,
|
120 |
+
negative_prompt=negative_prompt,
|
121 |
+
prompt_2=prompt_2,
|
122 |
+
width=width,
|
123 |
+
height=height,
|
124 |
+
negative_prompt_2=negative_prompt_2,
|
125 |
+
guidance_scale=guidance_scale_base,
|
126 |
+
num_inference_steps=num_inference_steps_base,
|
127 |
generator=generator,
|
|
|
|
|
128 |
).images[0]
|
129 |
return image
|
130 |
+
elif use_img2img:
|
131 |
+
images = pipe(
|
132 |
+
prompt=prompt,
|
133 |
+
image=init_image,
|
134 |
+
strength=strength_img2img,
|
135 |
+
negative_prompt=negative_prompt,
|
136 |
+
prompt_2=prompt_2,
|
137 |
+
negative_prompt_2=negative_prompt_2,
|
138 |
+
width=width,
|
139 |
+
height=height,
|
140 |
+
guidance_scale=guidance_scale_base,
|
141 |
+
num_inference_steps=num_inference_steps_base,
|
142 |
+
generator=generator,
|
143 |
+
output_type="pil",
|
144 |
+
).images[0]
|
145 |
+
return images
|
146 |
+
else:
|
147 |
+
return pipe(
|
148 |
+
prompt=prompt,
|
149 |
+
negative_prompt=negative_prompt,
|
150 |
+
prompt_2=prompt_2,
|
151 |
+
negative_prompt_2=negative_prompt_2,
|
152 |
+
width=width,
|
153 |
+
height=height,
|
154 |
+
guidance_scale=guidance_scale_base,
|
155 |
+
num_inference_steps=num_inference_steps_base,
|
156 |
+
generator=generator,
|
157 |
+
output_type="pil",
|
158 |
+
).images[0]
|
159 |
|
160 |
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
161 |
gr.HTML(
|
|
|
189 |
result = gr.Image(label="Result", show_label=False)
|
190 |
with gr.Accordion("Advanced options", open=False):
|
191 |
with gr.Row():
|
|
|
192 |
use_inpainting = gr.Checkbox(label='Use Inpainting', value=False, visible=ENABLE_USE_INPAINTING)
|
193 |
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
|
194 |
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
|
|
|
323 |
queue=False,
|
324 |
api_name=False,
|
325 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
|
327 |
gr.on(
|
328 |
triggers=[
|
|
|
364 |
url,
|
365 |
img_url,
|
366 |
mask_url,
|
|
|
367 |
],
|
368 |
outputs=result,
|
369 |
api_name="run",
|