File size: 19,574 Bytes
3672502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from abc import ABC, abstractmethod
import torch

from LLaVA.llava.model.multimodal_encoder.builder import build_vision_tower
from LLaVA.llava.model.multimodal_projector.builder import build_vision_projector

from LLaVA.llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, OBJECT_TOKEN_INDEX


class LlavaSearchMetaModel:

    def __init__(self, config):
        super(LlavaSearchMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(config, delay_load=True)
            self.mm_projector = build_vision_projector(config)
            self.mm_projector_object = build_vision_projector(config, object_projector=True)
            
    def get_vision_tower(self):
        vision_tower = getattr(self, 'vision_tower', None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def initialize_vision_modules(self, model_args, fsdp=None):
        vision_tower = model_args.vision_tower
        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
        pretrain_mm_perceiver_adapter = model_args.pretrain_mm_perceiver_adapter

        self.config.mm_vision_tower = vision_tower

        if self.get_vision_tower() is None:
            vision_tower = build_vision_tower(model_args)

            if fsdp is not None and len(fsdp) > 0:
                self.vision_tower = [vision_tower]
            else:
                self.vision_tower = vision_tower
        else:
            if fsdp is not None and len(fsdp) > 0:
                vision_tower = self.vision_tower[0]
            else:
                vision_tower = self.vision_tower
            vision_tower.load_model()

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
        self.config.object_mm_projector_type = getattr(model_args, 'object_mm_projector_type', 'perceiver')
        self.config.mm_hidden_size = vision_tower.hidden_size
        self.config.mm_vision_select_layer = mm_vision_select_layer
        self.config.mm_vision_select_feature = mm_vision_select_feature

        if getattr(self, 'mm_projector', None) is None:
            self.mm_projector = build_vision_projector(self.config)
            self.mm_projector_object = build_vision_projector(self.config, object_projector=True)


        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
            self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))

        if pretrain_mm_perceiver_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_perceiver_adapter, map_location='cpu')
            def get_w(weights, keyword):
                return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
            self.mm_projector_object.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))


class LlavaSearchMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        image_features_long = self.get_model().mm_projector(image_features)
        image_features_short = self.get_model().mm_projector_object(image_features)
        return image_features_long, image_features_short
    
    def project_features(self, object_features):
        object_features = self.get_model().get_vision_tower()(object_features)
        image_features_long = self.get_model().mm_projector(object_features)
        object_features_short = self.get_model().mm_projector_object(object_features)
        return image_features_long, object_features_short
    
    def prepare_inputs_labels_for_multimodal(
        self, input_ids, attention_mask, past_key_values, labels, images, object_features, images_long=None, objects_long=None
    ):  
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
                attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
            return input_ids, attention_mask, past_key_values, None, labels
        if type(images) is list or images.ndim == 5:
            concat_images = torch.cat([image for image in images], dim=0)
            image_features = self.encode_images(concat_images)
            split_sizes = [image.shape[0] for image in images]
            image_features = torch.split(image_features, split_sizes, dim=0)
            image_features = [x.flatten(0, 1) for x in image_features]
        else:
            image_features_long, image_features_short = self.encode_images(images)

        if object_features is not None and len(object_features) > 0:
            projected_object_features_long, projected_object_features_short = self.project_features(object_features)

        new_input_embeds = []
        new_labels = [] if labels is not None else None
        new_attention_mask = [] if attention_mask is not None else None
        cur_image_idx = 0
        cur_object_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
                # multimodal LLM, but the current sample is not multimodal
                half_len = cur_input_ids.shape[0] // 2
                cur_object_features = projected_object_features_short[cur_object_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
                cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
                cat_list = [cur_input_embeds_1, image_features_short[cur_image_idx][0:0], image_features_long[cur_image_idx][0:0]]
                for _ in range(3):
                    cat_list.extend([projected_object_features_short[cur_object_idx][0:0], projected_object_features_long[cur_object_idx][0:0]])
                    cur_object_idx += 1
                cat_list.append(cur_input_embeds_2)
                cur_input_embeds = torch.cat(cat_list, dim=0)
                new_input_embeds.append(cur_input_embeds)
                if labels is not None:
                    new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                new_attention_mask.append(attention_mask[batch_idx])
                continue
            image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            cur_new_input_embeds = []
            if labels is not None:
                cur_labels = labels[batch_idx]
                cur_new_labels = []
                assert cur_labels.shape == cur_input_ids.shape
            if attention_mask is not None:
                cur_attention_mask = attention_mask[batch_idx]
                cur_new_attention_mask = []
                assert cur_attention_mask.shape == cur_input_ids.shape
            while image_token_indices.numel() > 0:
                if images_long is None or images_long[cur_image_idx]:
                    cur_image_features = torch.cat([image_features_short[cur_image_idx][0:0], image_features_long[cur_image_idx]])
                else:
                    cur_image_features = torch.cat([image_features_short[cur_image_idx], image_features_long[cur_image_idx][0:0]])
                image_token_start = image_token_indices[0]
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2]))
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                        cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
                        cur_labels = cur_labels[image_token_start+2:]
                    if attention_mask is not None:
                        cur_new_attention_mask.append(cur_attention_mask[:image_token_start])
                        if cur_attention_mask[image_token_start]:
                            cur_new_attention_mask.append(torch.full((cur_image_features.shape[0],), True, device=attention_mask.device, dtype=attention_mask.dtype))
                        else:
                            cur_new_attention_mask.append(torch.full((cur_image_features.shape[0],), False, device=attention_mask.device, dtype=attention_mask.dtype))
                        cur_new_attention_mask.append(cur_attention_mask[image_token_start:image_token_start+1])
                        cur_attention_mask = cur_attention_mask[image_token_start+2:]
                else:
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
                    cur_new_input_embeds.append(cur_image_features)
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                        cur_labels = cur_labels[image_token_start+1:]
                    if attention_mask is not None:
                        cur_new_attention_mask.append(cur_attention_mask[:image_token_start])
                        if cur_attention_mask[image_token_start]:
                            cur_new_attention_mask.append(torch.full((cur_image_features.shape[0],), True, device=attention_mask.device, dtype=attention_mask.dtype))
                        else:
                            cur_new_attention_mask.append(torch.full((cur_image_features.shape[0],), False, device=attention_mask.device, dtype=attention_mask.dtype))
                        cur_attention_mask = cur_attention_mask[image_token_start+1:]
                cur_image_idx += 1
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_input_ids = cur_input_ids[image_token_start+2:]
                else:
                    cur_input_ids = cur_input_ids[image_token_start+1:]
                image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            object_token_indices = torch.where(cur_input_ids == OBJECT_TOKEN_INDEX)[0]
            cur_object_num = object_token_indices.numel()
            while object_token_indices.numel() > 0:
                if objects_long is None or not objects_long[cur_object_idx]:
                    cur_object_features = torch.cat([projected_object_features_short[cur_object_idx], projected_object_features_long[cur_object_idx][0:0]]) 
                else:
                    cur_object_features = torch.cat([projected_object_features_short[cur_object_idx][0:0],projected_object_features_long[cur_object_idx]])
                object_token_start = object_token_indices[0]
                cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:object_token_start]))
                cur_new_input_embeds.append(cur_object_features)
                if labels is not None:
                    cur_new_labels.append(cur_labels[:object_token_start])
                    cur_new_labels.append(torch.full((cur_object_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
                    cur_labels = cur_labels[object_token_start+1:]
                if attention_mask is not None:
                    cur_new_attention_mask.append(cur_attention_mask[:object_token_start])
                    if cur_attention_mask[object_token_start]:
                        cur_new_attention_mask.append(torch.full((cur_object_features.shape[0],), True, device=attention_mask.device, dtype=attention_mask.dtype))
                    else:
                        cur_new_attention_mask.append(torch.full((cur_object_features.shape[0],), False, device=attention_mask.device, dtype=attention_mask.dtype))
                    cur_attention_mask = cur_attention_mask[object_token_start+1:]
                cur_object_idx += 1
                cur_input_ids = cur_input_ids[object_token_start+1:]
                object_token_indices = torch.where(cur_input_ids == OBJECT_TOKEN_INDEX)[0]
            
            if cur_input_ids.numel() > 0:
                if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
                else:
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
                if labels is not None:
                    cur_new_labels.append(cur_labels)
                if attention_mask is not None:
                    cur_new_attention_mask.append(cur_attention_mask)
            cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
            cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
            new_input_embeds.append(cur_new_input_embeds)
            if labels is not None:
                cur_new_labels = torch.cat(cur_new_labels, dim=0)
                new_labels.append(cur_new_labels)
            if attention_mask is not None:
                cur_new_attention_mask = torch.cat(cur_new_attention_mask, dim=0)
                new_attention_mask.append(cur_new_attention_mask)

        need_padding = False
        for i in range(len(new_input_embeds)):
            for j in range(i+1, len(new_input_embeds)):
                if new_input_embeds[i].shape != new_input_embeds[j].shape:
                    need_padding = True
                    break
            if need_padding:
                break
        if need_padding:
            max_len = max(x.shape[0] for x in new_input_embeds)

            new_input_embeds_align = []
            for cur_new_embed in new_input_embeds:
                cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
                new_input_embeds_align.append(cur_new_embed)
            new_input_embeds = torch.stack(new_input_embeds_align, dim=0)

            if labels is not None:
                new_labels_align = []
                for cur_new_label in new_labels:
                    cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
                    new_labels_align.append(cur_new_label)
                new_labels = torch.stack(new_labels_align, dim=0)

            if attention_mask is not None:
                new_attention_mask_align = []
                for cur_new_attention_mask in new_attention_mask:
                    new_attn_mask_pad_right = torch.full((max_len - cur_new_attention_mask.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
                    cur_new_attention_mask = torch.cat((cur_new_attention_mask, new_attn_mask_pad_right), dim=0)
                    new_attention_mask.append(cur_new_attention_mask)
                attention_mask = torch.stack(new_attention_mask, dim=0)
                assert attention_mask.shape == new_labels.shape

        else:
            new_input_embeds = torch.stack(new_input_embeds, dim=0)
            if labels is not None:
                new_labels  = torch.stack(new_labels, dim=0)
            if new_attention_mask is not None and len(new_attention_mask):
                new_attention_mask  = torch.stack(new_attention_mask, dim=0)
                attention_mask = new_attention_mask
                assert attention_mask.shape == new_input_embeds.shape[:2]
        
        return None, attention_mask, past_key_values, new_input_embeds, new_labels

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

            if num_new_tokens > 0:
                input_embeddings = self.get_input_embeddings().weight.data
                output_embeddings = self.get_output_embeddings().weight.data

                input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)
                output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
                    dim=0, keepdim=True)

                input_embeddings[-num_new_tokens:] = input_embeddings_avg
                output_embeddings[-num_new_tokens:] = output_embeddings_avg

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
                embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False