File size: 3,343 Bytes
3672502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
Copied from
https://github.com/lucidrains/flamingo-pytorch/blob/main/flamingo_pytorch/flamingo_pytorch.py
"""

import torch
from torch import nn, einsum
import torch.nn.functional as F

from einops import rearrange, repeat
from einops_exts import rearrange_many, repeat_many

def exists(val):
    return val is not None

def FeedForward(dim, mult = 4):
    inner_dim = int(dim * mult)
    return nn.Sequential(
        nn.LayerNorm(dim),
        nn.Linear(dim, inner_dim, bias = False),
        nn.GELU(),
        nn.Linear(inner_dim, dim, bias = False)
    )

class PerceiverAttention(nn.Module):
    def __init__(
        self,
        *,
        dim,
        dim_head = 64,
        heads = 8
    ):
        super().__init__()
        self.scale = dim_head ** -0.5
        self.heads = heads
        inner_dim = dim_head * heads

        self.norm_media = nn.LayerNorm(dim)
        self.norm_latents = nn.LayerNorm(dim)

        self.to_q = nn.Linear(dim, inner_dim, bias = False)
        self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
        self.to_out = nn.Linear(inner_dim, dim, bias = False)

    def forward(self, x, latents):
        """
        einstein notation
        b - batch
        t - time
        n - sequence
        d - dimension
        """
        x = self.norm_media(x)
        latents = self.norm_latents(latents)

        b, m, h = *x.shape[:2], self.heads

        q = self.to_q(latents)

        # the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to
        kv_input = torch.cat((x, latents), dim = -2)
        k, v = self.to_kv(kv_input).chunk(2, dim = -1)

        q, k, v = rearrange_many((q, k, v), 'b t n (h d) -> b h t n d', h = h)

        q = q * self.scale

        # attention

        sim = einsum('... i d, ... j d  -> ... i j', q, k)

        sim = sim - sim.amax(dim = -1, keepdim = True).detach()
        attn = sim.softmax(dim = -1)

        out = einsum('... i j, ... j d -> ... i d', attn, v)
        out = rearrange(out, 'b h t n d -> b t n (h d)', h = h)
        return self.to_out(out)

class PerceiverResampler(nn.Module):
    def __init__(
        self,
        *,
        dim,
        depth,
        dim_head = 64,
        heads = 8,
        num_latents = 64,
        num_media_embeds = 4,
        ff_mult = 4
    ):
        super().__init__()
        self.latents = nn.Parameter(torch.randn(num_latents, dim))
        self.media_pos_emb = nn.Parameter(torch.randn(num_media_embeds, 1, dim))

        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PerceiverAttention(dim = dim, dim_head = dim_head, heads = heads),
                FeedForward(dim = dim, mult = ff_mult)
            ]))

        self.norm = nn.LayerNorm(dim)

    def forward(self, x):
        if x.ndim == 3:
            x = rearrange(x, 'b n d -> b 1 n d')

        times = x.shape[1]
        x = x + self.media_pos_emb[:times]

        latents = repeat(self.latents, 'n d -> b m n d', b = x.shape[0], m = x.shape[1])

        for attn, ff in self.layers:
            latents = attn(x, latents) + latents
            latents = ff(latents) + latents

        res = self.norm(latents)

        if res.ndim == 4:
            res = res.squeeze(1)

        return res