Spaces:
Runtime error
Runtime error
File size: 8,521 Bytes
3672502 aa506f8 3672502 aa506f8 3672502 323cabb fcfe29d 3672502 323cabb 3672502 323cabb 3672502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import argparse
from copy import deepcopy
import re
import os
import bleach
import cv2
import gradio as gr
from PIL import Image
import numpy as np
import torch
from visual_search import parse_args, VSM, visual_search
from vstar_bench_eval import normalize_bbox, expand2square, VQA_LLM
import cv2
BOX_COLOR = (255, 0, 0) # Red
TEXT_COLOR = (255, 255, 255) # White
def visualize_bbox(img, bbox, class_name, color=BOX_COLOR, thickness=2):
"""Visualizes a single bounding box on the image"""
x_min, y_min, w, h = bbox
x_min, x_max, y_min, y_max = int(x_min), int(x_min + w), int(y_min), int(y_min + h)
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness)
((text_width, text_height), _) = cv2.getTextSize(class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
cv2.rectangle(img, (x_min, y_min - int(1.3 * text_height)), (x_min + text_width, y_min), BOX_COLOR, -1)
cv2.putText(
img,
text=class_name,
org=(x_min, y_min - int(0.3 * text_height)),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.5,
color=TEXT_COLOR,
lineType=cv2.LINE_AA,
)
return img
def parse_args_vqallm(args):
parser = argparse.ArgumentParser()
parser.add_argument("--vqa-model-path", type=str, default="craigwu/seal_vqa_7b")
parser.add_argument("--vqa-model-base", type=str, default=None)
parser.add_argument("--conv_type", default="v1", type=str,)
parser.add_argument("--vsm-model-path", type=str, default="craigwu/seal_vsm_7b")
parser.add_argument("--minimum_size_scale", default=4.0, type=float)
parser.add_argument("--minimum_size", default=224, type=int)
return parser.parse_args(args)
args = parse_args_vqallm({})
# init VQA LLM
vqa_llm = VQA_LLM(args)
# init VSM
vsm_args = parse_args({})
vsm_args.version = args.vsm_model_path
vsm = VSM(vsm_args)
missing_objects_msg = "Sorry, I can not answer the question. Some visual information about the following objects is missing or unclear:"
focus_msg = "Additional visual information to focus on: "
# Gradio
examples = [
[
"Based on the exact content of the flag on the roof, what can we know about its owner?",
"./assets/example_images/flag.JPG",
],
[
"At which conference did someone get that black mug?",
"./assets/example_images/blackmug.JPG",
],
[
"Where to buy a mug like this based on its logo?",
"./assets/example_images/desktop.webp",
],
[
"What color is the liquid in the glass?",
"./assets/example_images/animate_glass.jpg",
],
[
"What animal is drawn on that red signicade?",
"./assets/example_images/signicade.JPG",
],
[
"What kind of drink can we buy from that vending machine?",
"./assets/example_images/vending_machine.jpg",
]
]
title = "V*: Guided Visual Search as a Core Mechanism in Multimodal LLMs"
description = """
<font size=4>
This is the demo of our SEAL framework with V* visual search mechanism. \n
**Note**: The current framework is built on top of **LLaVA-7b**. \n
**Note**: The current visual search model and search algorithm mainly focus on common objects and single instance cases.\n
</font>
"""
article = """
<p style='text-align: center'>
<a href='https://arxiv.org/abs/2312.14135' target='_blank'>
Preprint Paper
</a>
\n
<p style='text-align: center'>
<a href='https://github.com/penghao-wu/vstar' target='_blank'> Github </a></p>
"""
def inference(input_str, input_image):
## filter out special chars
input_str = bleach.clean(input_str)
print("input_str: ", input_str, "input_image: ", input_image)
## input valid check
if not re.match(r"^[A-Za-z ,.!?\'\"]+$", input_str) or len(input_str) < 1:
output_str = "[Error] Invalid input: ", input_str
torch.cuda.empty_cache()
return output_str, None, None, None
# Model Inference
# check whether we need additional visual information
question = input_str
image = Image.open(input_image).convert('RGB')
image, _, _ = expand2square(image, tuple(int(x*255) for x in vqa_llm.image_processor.image_mean))
prediction = vqa_llm.free_form_inference(image, question, max_new_tokens=512)
missing_objects = []
if missing_objects_msg in prediction:
missing_objects = prediction.split(missing_objects_msg)[-1]
if missing_objects.endswith('.'):
missing_objects = missing_objects[:-1]
missing_objects = missing_objects.split(',')
missing_objects = [missing_object.strip() for missing_object in missing_objects]
if len(missing_objects) == 0:
torch.cuda.empty_cache()
return prediction, None, None, None
search_result = []
failed_objects = []
# visual search
for object_name in missing_objects:
image = Image.open(input_image).convert('RGB')
smallest_size = max(int(np.ceil(min(image.width, image.height)/args.minimum_size_scale)), args.minimum_size)
final_step, path_length, search_successful, all_valid_boxes = visual_search(vsm, image, object_name, confidence_low=0.3, target_bbox=None, smallest_size=smallest_size)
if not search_successful:
failed_objects.append(object_name)
if all_valid_boxes is not None:
# might exist multiple target instances
for search_bbox in all_valid_boxes:
search_final_patch = final_step['bbox']
search_bbox[0] += search_final_patch[0]
search_bbox[1] += search_final_patch[1]
search_result.append({'bbox':search_bbox.tolist(),'name':object_name})
else:
search_bbox = final_step['detection_result']
search_final_patch = final_step['bbox']
search_bbox[0] += search_final_patch[0]
search_bbox[1] += search_final_patch[1]
search_result.append({'bbox':search_bbox.tolist(),'name':object_name})
# answer based on the searched results
image = Image.open(input_image).convert('RGB')
object_names = [_['name'] for _ in search_result]
bboxs = deepcopy([_['bbox'] for _ in search_result])
search_result_image = np.array(image).copy()
for object_name, bbox in zip(object_names, bboxs):
search_result_image = visualize_bbox(search_result_image, bbox, class_name=object_name, color=(255,0,0))
if len(object_names) <= 2:
images_long = [False]
objects_long = [True]*len(object_names)
else:
images_long = [False]
objects_long = [False]*len(object_names)
object_crops = []
for bbox in bboxs:
object_crop = vqa_llm.get_object_crop(image, bbox, patch_scale=1.2)
object_crops.append(object_crop)
object_crops = torch.stack(object_crops, 0)
image, left, top = expand2square(image, tuple(int(x*255) for x in vqa_llm.image_processor.image_mean))
bbox_list = []
for bbox in bboxs:
bbox[0] += left
bbox[1] += top
bbox_list.append(bbox)
bbox_list = [normalize_bbox(bbox, image.width, image.height) for bbox in bbox_list]
cur_focus_msg = focus_msg
for i, (object_name, bbox) in enumerate(zip(object_names, bbox_list)):
cur_focus_msg = cur_focus_msg + "{} <object> at location [{:.3f},{:.3f},{:.3f},{:.3f}]".format(object_name, bbox[0], bbox[1], bbox[2], bbox[3])
if i != len(bbox_list)-1:
cur_focus_msg = cur_focus_msg+"; "
else:
cur_focus_msg = cur_focus_msg +'.'
if len(failed_objects) > 0:
if len(object_names) > 0:
cur_focus_msg = cur_focus_msg[:-1] + "; "
for i, failed_object in enumerate(failed_objects):
cur_focus_msg = cur_focus_msg + "{} not existent in the image".format(object_name)
if i != len(failed_objects)-1:
cur_focus_msg = cur_focus_msg+"; "
else:
cur_focus_msg = cur_focus_msg +'.'
question_with_focus = cur_focus_msg+"\n"+question
response = vqa_llm.free_form_inference(image, question_with_focus, object_crops=object_crops, images_long=images_long, objects_long=objects_long, temperature=0.0, max_new_tokens=512)
search_result_str = ""
if len(object_names) > 0:
search_result_str += "Targets located after search: {}.".format(', '.join(object_names))
if len(failed_objects) > 0:
search_result_str += "Targets unable to locate after search: {}.".format(', '.join(failed_objects))
torch.cuda.empty_cache()
return "Need to conduct visual search to search for: {}.".format(', '.join(missing_objects)), search_result_str, search_result_image, response
demo = gr.Interface(
inference,
inputs=[
gr.Textbox(lines=1, placeholder=None, label="Text Instruction"),
gr.Image(type="filepath", label="Input Image"),
],
outputs=[
gr.Textbox(lines=1, placeholder=None, label="Direct Answer"),
gr.Textbox(lines=1, placeholder=None, label="Visual Search Results"),
gr.Image(type="pil", label="Visual Search Results"),
gr.Textbox(lines=1, placeholder=None, label="Final Answer"),
],
examples=examples,
title=title,
description=description,
article=article,
allow_flagging="auto",
)
demo.queue()
demo.launch() |