Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
import re | |
from .perceiver import PerceiverResampler | |
class IdentityMap(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x, *args, **kwargs): | |
return x | |
def config(self): | |
return {"mm_projector_type": 'identity'} | |
class SimpleResBlock(nn.Module): | |
def __init__(self, channels): | |
super().__init__() | |
self.pre_norm = nn.LayerNorm(channels) | |
self.proj = nn.Sequential( | |
nn.Linear(channels, channels), | |
nn.GELU(), | |
nn.Linear(channels, channels) | |
) | |
def forward(self, x): | |
x = self.pre_norm(x) | |
return x + self.proj(x) | |
def build_vision_projector(config, object_projector=False, delay_load=False, **kwargs): | |
if not object_projector: | |
projector_type = getattr(config, 'mm_projector_type', 'linear') | |
else: | |
projector_type = getattr(config, 'object_mm_projector_type', 'perceiver') | |
if projector_type == 'linear': | |
return nn.Linear(config.mm_hidden_size, config.hidden_size) | |
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) | |
if mlp_gelu_match: | |
mlp_depth = int(mlp_gelu_match.group(1)) | |
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] | |
for _ in range(1, mlp_depth): | |
modules.append(nn.GELU()) | |
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) | |
return nn.Sequential(*modules) | |
if projector_type == 'identity': | |
return IdentityMap() | |
if projector_type == "perceiver": | |
return nn.Sequential( | |
nn.LayerNorm(config.mm_hidden_size), | |
PerceiverResampler( | |
dim = config.mm_hidden_size, | |
dim_head = 96, | |
depth = 6, | |
heads = 16, | |
num_latents = 32, | |
num_media_embeds = 1 | |
), | |
nn.Linear( | |
config.mm_hidden_size, config.hidden_size | |
) | |
) | |
raise ValueError(f'Unknown projector type: {projector_type}') | |