Spaces:
Runtime error
Runtime error
""" | |
Copied from | |
https://github.com/lucidrains/flamingo-pytorch/blob/main/flamingo_pytorch/flamingo_pytorch.py | |
""" | |
import torch | |
from torch import nn, einsum | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from einops_exts import rearrange_many, repeat_many | |
def exists(val): | |
return val is not None | |
def FeedForward(dim, mult = 4): | |
inner_dim = int(dim * mult) | |
return nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, inner_dim, bias = False), | |
nn.GELU(), | |
nn.Linear(inner_dim, dim, bias = False) | |
) | |
class PerceiverAttention(nn.Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
dim_head = 64, | |
heads = 8 | |
): | |
super().__init__() | |
self.scale = dim_head ** -0.5 | |
self.heads = heads | |
inner_dim = dim_head * heads | |
self.norm_media = nn.LayerNorm(dim) | |
self.norm_latents = nn.LayerNorm(dim) | |
self.to_q = nn.Linear(dim, inner_dim, bias = False) | |
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) | |
self.to_out = nn.Linear(inner_dim, dim, bias = False) | |
def forward(self, x, latents): | |
""" | |
einstein notation | |
b - batch | |
t - time | |
n - sequence | |
d - dimension | |
""" | |
x = self.norm_media(x) | |
latents = self.norm_latents(latents) | |
b, m, h = *x.shape[:2], self.heads | |
q = self.to_q(latents) | |
# the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to | |
kv_input = torch.cat((x, latents), dim = -2) | |
k, v = self.to_kv(kv_input).chunk(2, dim = -1) | |
q, k, v = rearrange_many((q, k, v), 'b t n (h d) -> b h t n d', h = h) | |
q = q * self.scale | |
# attention | |
sim = einsum('... i d, ... j d -> ... i j', q, k) | |
sim = sim - sim.amax(dim = -1, keepdim = True).detach() | |
attn = sim.softmax(dim = -1) | |
out = einsum('... i j, ... j d -> ... i d', attn, v) | |
out = rearrange(out, 'b h t n d -> b t n (h d)', h = h) | |
return self.to_out(out) | |
class PerceiverResampler(nn.Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
depth, | |
dim_head = 64, | |
heads = 8, | |
num_latents = 64, | |
num_media_embeds = 4, | |
ff_mult = 4 | |
): | |
super().__init__() | |
self.latents = nn.Parameter(torch.randn(num_latents, dim)) | |
self.media_pos_emb = nn.Parameter(torch.randn(num_media_embeds, 1, dim)) | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append(nn.ModuleList([ | |
PerceiverAttention(dim = dim, dim_head = dim_head, heads = heads), | |
FeedForward(dim = dim, mult = ff_mult) | |
])) | |
self.norm = nn.LayerNorm(dim) | |
def forward(self, x): | |
if x.ndim == 3: | |
x = rearrange(x, 'b n d -> b 1 n d') | |
times = x.shape[1] | |
x = x + self.media_pos_emb[:times] | |
latents = repeat(self.latents, 'n d -> b m n d', b = x.shape[0], m = x.shape[1]) | |
for attn, ff in self.layers: | |
latents = attn(x, latents) + latents | |
latents = ff(latents) + latents | |
res = self.norm(latents) | |
if res.ndim == 4: | |
res = res.squeeze(1) | |
return res |