Spaces:
No application file
No application file
deploy: fb8f67e71123cce23e6f5de329f55e1af712771e
Browse files- layout-overlap.py +184 -0
layout-overlap.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Tuple, TypedDict, Union
|
2 |
+
|
3 |
+
import datasets as ds
|
4 |
+
import evaluate
|
5 |
+
import numpy as np
|
6 |
+
import numpy.typing as npt
|
7 |
+
|
8 |
+
_DESCRIPTION = """\
|
9 |
+
Some overlap metrics that are different to each other in previous works.
|
10 |
+
"""
|
11 |
+
|
12 |
+
_CITATION = """\
|
13 |
+
@inproceedings{li2018layoutgan,
|
14 |
+
title={LayoutGAN: Generating Graphic Layouts with Wireframe Discriminators},
|
15 |
+
author={Li, Jianan and Yang, Jimei and Hertzmann, Aaron and Zhang, Jianming and Xu, Tingfa},
|
16 |
+
booktitle={International Conference on Learning Representations},
|
17 |
+
year={2019}
|
18 |
+
}
|
19 |
+
|
20 |
+
@article{li2020attribute,
|
21 |
+
title={Attribute-conditioned layout gan for automatic graphic design},
|
22 |
+
author={Li, Jianan and Yang, Jimei and Zhang, Jianming and Liu, Chang and Wang, Christina and Xu, Tingfa},
|
23 |
+
journal={IEEE Transactions on Visualization and Computer Graphics},
|
24 |
+
volume={27},
|
25 |
+
number={10},
|
26 |
+
pages={4039--4048},
|
27 |
+
year={2020},
|
28 |
+
publisher={IEEE}
|
29 |
+
}
|
30 |
+
|
31 |
+
@inproceedings{kikuchi2021constrained,
|
32 |
+
title={Constrained graphic layout generation via latent optimization},
|
33 |
+
author={Kikuchi, Kotaro and Simo-Serra, Edgar and Otani, Mayu and Yamaguchi, Kota},
|
34 |
+
booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
|
35 |
+
pages={88--96},
|
36 |
+
year={2021}
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
|
40 |
+
|
41 |
+
def convert_xywh_to_ltrb(
|
42 |
+
batch_bbox: npt.NDArray[np.float64],
|
43 |
+
) -> Tuple[
|
44 |
+
npt.NDArray[np.float64],
|
45 |
+
npt.NDArray[np.float64],
|
46 |
+
npt.NDArray[np.float64],
|
47 |
+
npt.NDArray[np.float64],
|
48 |
+
]:
|
49 |
+
xc, yc, w, h = batch_bbox
|
50 |
+
x1 = xc - w / 2
|
51 |
+
y1 = yc - h / 2
|
52 |
+
x2 = xc + w / 2
|
53 |
+
y2 = yc + h / 2
|
54 |
+
return (x1, y1, x2, y2)
|
55 |
+
|
56 |
+
|
57 |
+
class A(TypedDict):
|
58 |
+
a1: npt.NDArray[np.float64]
|
59 |
+
ai: npt.NDArray[np.float64]
|
60 |
+
|
61 |
+
|
62 |
+
class LayoutOverlap(evaluate.Metric):
|
63 |
+
def _info(self) -> evaluate.EvaluationModuleInfo:
|
64 |
+
return evaluate.MetricInfo(
|
65 |
+
description=_DESCRIPTION,
|
66 |
+
citation=_CITATION,
|
67 |
+
features=ds.Features(
|
68 |
+
{
|
69 |
+
"bbox": ds.Sequence(ds.Sequence(ds.Value("float64"))),
|
70 |
+
"mask": ds.Sequence(ds.Value("bool")),
|
71 |
+
}
|
72 |
+
),
|
73 |
+
codebase_urls=[
|
74 |
+
"https://github.com/ktrk115/const_layout/blob/master/metric.py#L138-L164",
|
75 |
+
"https://github.com/CyberAgentAILab/layout-dm/blob/main/src/trainer/trainer/helpers/metric.py#L150-L203",
|
76 |
+
],
|
77 |
+
)
|
78 |
+
|
79 |
+
def __calculate_a1_ai(self, batch_bbox: npt.NDArray[np.float64]) -> A:
|
80 |
+
|
81 |
+
l1, t1, r1, b1 = convert_xywh_to_ltrb(batch_bbox[:, :, :, None])
|
82 |
+
l2, t2, r2, b2 = convert_xywh_to_ltrb(batch_bbox[:, :, None, :])
|
83 |
+
a1 = (r1 - l1) * (b1 - t1)
|
84 |
+
|
85 |
+
# shape: (B, S, S)
|
86 |
+
l_max = np.maximum(l1, l2)
|
87 |
+
r_min = np.minimum(r1, r2)
|
88 |
+
t_max = np.maximum(t1, t2)
|
89 |
+
b_min = np.minimum(b1, b2)
|
90 |
+
cond = (l_max < r_min) & (t_max < b_min)
|
91 |
+
ai = np.where(cond, (r_min - l_max) * (b_min - t_max), 0.0)
|
92 |
+
|
93 |
+
return {"a1": a1, "ai": ai}
|
94 |
+
|
95 |
+
def _compute_ac_layout_gan(
|
96 |
+
self,
|
97 |
+
S: int,
|
98 |
+
ai: npt.NDArray[np.float64],
|
99 |
+
a1: npt.NDArray[np.float64],
|
100 |
+
batch_mask: npt.NDArray[np.bool_],
|
101 |
+
) -> npt.NDArray[np.float64]:
|
102 |
+
|
103 |
+
# shape: (B, S) -> (B, S, S)
|
104 |
+
batch_mask = ~batch_mask[:, None, :] | ~batch_mask[:, :, None]
|
105 |
+
indices = np.arange(S)
|
106 |
+
batch_mask[:, indices, indices] = True
|
107 |
+
ai[batch_mask] = 0.0
|
108 |
+
|
109 |
+
# shape: (B, S, S)
|
110 |
+
ar = np.nan_to_num(ai / a1)
|
111 |
+
score = ar.sum(axis=(1, 2))
|
112 |
+
|
113 |
+
return score
|
114 |
+
|
115 |
+
def _compute_layout_gan_pp(
|
116 |
+
self,
|
117 |
+
score_ac_layout_gan: npt.NDArray[np.float64],
|
118 |
+
batch_mask: npt.NDArray[np.bool_],
|
119 |
+
) -> npt.NDArray[np.float64]:
|
120 |
+
|
121 |
+
# shape: (B, S) -> (B,)
|
122 |
+
batch_mask = batch_mask.sum(axis=1)
|
123 |
+
|
124 |
+
# shape: (B,)
|
125 |
+
score_normalized = score_ac_layout_gan / batch_mask
|
126 |
+
score_normalized[np.isnan(score_normalized)] = 0.0
|
127 |
+
|
128 |
+
return score_normalized
|
129 |
+
|
130 |
+
def _compute_layout_gan(
|
131 |
+
self, S: int, B: int, ai: npt.NDArray[np.float64]
|
132 |
+
) -> npt.NDArray[np.float64]:
|
133 |
+
|
134 |
+
indices = np.arange(S)
|
135 |
+
ii, jj = np.meshgrid(indices, indices, indexing="ij")
|
136 |
+
|
137 |
+
# shape: ii (S, S) -> (1, S, S), jj (S, S) -> (1, S, S)
|
138 |
+
# shape: (1, S, S) -> (B, S, S)
|
139 |
+
ai[np.repeat((ii[None, :] >= jj[None, :]), axis=0, repeats=B)] = 0.0
|
140 |
+
|
141 |
+
# shape: (B, S, S) -> (B,)
|
142 |
+
score = ai.sum(axis=(1, 2))
|
143 |
+
|
144 |
+
return score
|
145 |
+
|
146 |
+
def _compute(
|
147 |
+
self,
|
148 |
+
*,
|
149 |
+
bbox: Union[npt.NDArray[np.float64], List[List[int]]],
|
150 |
+
mask: Union[npt.NDArray[np.bool_], List[List[bool]]],
|
151 |
+
) -> Dict[str, npt.NDArray[np.float64]]:
|
152 |
+
|
153 |
+
# shape: (B, model_max_length, C)
|
154 |
+
bbox = np.array(bbox)
|
155 |
+
# shape: (B, model_max_length)
|
156 |
+
mask = np.array(mask)
|
157 |
+
|
158 |
+
assert bbox.ndim == 3
|
159 |
+
assert mask.ndim == 2
|
160 |
+
|
161 |
+
# S: model_max_length
|
162 |
+
B, S, C = bbox.shape
|
163 |
+
|
164 |
+
# shape: batch_bbox (B, S, C), batch_mask (B, S) -> (B, S, 1) -> (B, S, C)
|
165 |
+
bbox[np.repeat(~mask[:, :, None], axis=2, repeats=C)] = 0.0
|
166 |
+
# shape: (C, B, S)
|
167 |
+
bbox = bbox.transpose(2, 0, 1)
|
168 |
+
|
169 |
+
A = self.__calculate_a1_ai(bbox)
|
170 |
+
|
171 |
+
# shape: (B,)
|
172 |
+
score_ac_layout_gan = self._compute_ac_layout_gan(S=S, batch_mask=mask, **A)
|
173 |
+
# shape: (B,)
|
174 |
+
score_layout_gan_pp = self._compute_layout_gan_pp(
|
175 |
+
score_ac_layout_gan=score_ac_layout_gan, batch_mask=mask
|
176 |
+
)
|
177 |
+
# shape: (B,)
|
178 |
+
score_layout_gan = self._compute_layout_gan(B=B, S=S, ai=A["ai"])
|
179 |
+
|
180 |
+
return {
|
181 |
+
"overlap-ACLayoutGAN": score_ac_layout_gan,
|
182 |
+
"overlap-LayoutGAN++": score_layout_gan_pp,
|
183 |
+
"overlap-LayoutGAN": score_layout_gan,
|
184 |
+
}
|