shunk031 commited on
Commit
47f7742
·
1 Parent(s): 0a9e7b7

deploy: fb8f67e71123cce23e6f5de329f55e1af712771e

Browse files
Files changed (1) hide show
  1. layout-overlap.py +184 -0
layout-overlap.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Tuple, TypedDict, Union
2
+
3
+ import datasets as ds
4
+ import evaluate
5
+ import numpy as np
6
+ import numpy.typing as npt
7
+
8
+ _DESCRIPTION = """\
9
+ Some overlap metrics that are different to each other in previous works.
10
+ """
11
+
12
+ _CITATION = """\
13
+ @inproceedings{li2018layoutgan,
14
+ title={LayoutGAN: Generating Graphic Layouts with Wireframe Discriminators},
15
+ author={Li, Jianan and Yang, Jimei and Hertzmann, Aaron and Zhang, Jianming and Xu, Tingfa},
16
+ booktitle={International Conference on Learning Representations},
17
+ year={2019}
18
+ }
19
+
20
+ @article{li2020attribute,
21
+ title={Attribute-conditioned layout gan for automatic graphic design},
22
+ author={Li, Jianan and Yang, Jimei and Zhang, Jianming and Liu, Chang and Wang, Christina and Xu, Tingfa},
23
+ journal={IEEE Transactions on Visualization and Computer Graphics},
24
+ volume={27},
25
+ number={10},
26
+ pages={4039--4048},
27
+ year={2020},
28
+ publisher={IEEE}
29
+ }
30
+
31
+ @inproceedings{kikuchi2021constrained,
32
+ title={Constrained graphic layout generation via latent optimization},
33
+ author={Kikuchi, Kotaro and Simo-Serra, Edgar and Otani, Mayu and Yamaguchi, Kota},
34
+ booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
35
+ pages={88--96},
36
+ year={2021}
37
+ }
38
+ """
39
+
40
+
41
+ def convert_xywh_to_ltrb(
42
+ batch_bbox: npt.NDArray[np.float64],
43
+ ) -> Tuple[
44
+ npt.NDArray[np.float64],
45
+ npt.NDArray[np.float64],
46
+ npt.NDArray[np.float64],
47
+ npt.NDArray[np.float64],
48
+ ]:
49
+ xc, yc, w, h = batch_bbox
50
+ x1 = xc - w / 2
51
+ y1 = yc - h / 2
52
+ x2 = xc + w / 2
53
+ y2 = yc + h / 2
54
+ return (x1, y1, x2, y2)
55
+
56
+
57
+ class A(TypedDict):
58
+ a1: npt.NDArray[np.float64]
59
+ ai: npt.NDArray[np.float64]
60
+
61
+
62
+ class LayoutOverlap(evaluate.Metric):
63
+ def _info(self) -> evaluate.EvaluationModuleInfo:
64
+ return evaluate.MetricInfo(
65
+ description=_DESCRIPTION,
66
+ citation=_CITATION,
67
+ features=ds.Features(
68
+ {
69
+ "bbox": ds.Sequence(ds.Sequence(ds.Value("float64"))),
70
+ "mask": ds.Sequence(ds.Value("bool")),
71
+ }
72
+ ),
73
+ codebase_urls=[
74
+ "https://github.com/ktrk115/const_layout/blob/master/metric.py#L138-L164",
75
+ "https://github.com/CyberAgentAILab/layout-dm/blob/main/src/trainer/trainer/helpers/metric.py#L150-L203",
76
+ ],
77
+ )
78
+
79
+ def __calculate_a1_ai(self, batch_bbox: npt.NDArray[np.float64]) -> A:
80
+
81
+ l1, t1, r1, b1 = convert_xywh_to_ltrb(batch_bbox[:, :, :, None])
82
+ l2, t2, r2, b2 = convert_xywh_to_ltrb(batch_bbox[:, :, None, :])
83
+ a1 = (r1 - l1) * (b1 - t1)
84
+
85
+ # shape: (B, S, S)
86
+ l_max = np.maximum(l1, l2)
87
+ r_min = np.minimum(r1, r2)
88
+ t_max = np.maximum(t1, t2)
89
+ b_min = np.minimum(b1, b2)
90
+ cond = (l_max < r_min) & (t_max < b_min)
91
+ ai = np.where(cond, (r_min - l_max) * (b_min - t_max), 0.0)
92
+
93
+ return {"a1": a1, "ai": ai}
94
+
95
+ def _compute_ac_layout_gan(
96
+ self,
97
+ S: int,
98
+ ai: npt.NDArray[np.float64],
99
+ a1: npt.NDArray[np.float64],
100
+ batch_mask: npt.NDArray[np.bool_],
101
+ ) -> npt.NDArray[np.float64]:
102
+
103
+ # shape: (B, S) -> (B, S, S)
104
+ batch_mask = ~batch_mask[:, None, :] | ~batch_mask[:, :, None]
105
+ indices = np.arange(S)
106
+ batch_mask[:, indices, indices] = True
107
+ ai[batch_mask] = 0.0
108
+
109
+ # shape: (B, S, S)
110
+ ar = np.nan_to_num(ai / a1)
111
+ score = ar.sum(axis=(1, 2))
112
+
113
+ return score
114
+
115
+ def _compute_layout_gan_pp(
116
+ self,
117
+ score_ac_layout_gan: npt.NDArray[np.float64],
118
+ batch_mask: npt.NDArray[np.bool_],
119
+ ) -> npt.NDArray[np.float64]:
120
+
121
+ # shape: (B, S) -> (B,)
122
+ batch_mask = batch_mask.sum(axis=1)
123
+
124
+ # shape: (B,)
125
+ score_normalized = score_ac_layout_gan / batch_mask
126
+ score_normalized[np.isnan(score_normalized)] = 0.0
127
+
128
+ return score_normalized
129
+
130
+ def _compute_layout_gan(
131
+ self, S: int, B: int, ai: npt.NDArray[np.float64]
132
+ ) -> npt.NDArray[np.float64]:
133
+
134
+ indices = np.arange(S)
135
+ ii, jj = np.meshgrid(indices, indices, indexing="ij")
136
+
137
+ # shape: ii (S, S) -> (1, S, S), jj (S, S) -> (1, S, S)
138
+ # shape: (1, S, S) -> (B, S, S)
139
+ ai[np.repeat((ii[None, :] >= jj[None, :]), axis=0, repeats=B)] = 0.0
140
+
141
+ # shape: (B, S, S) -> (B,)
142
+ score = ai.sum(axis=(1, 2))
143
+
144
+ return score
145
+
146
+ def _compute(
147
+ self,
148
+ *,
149
+ bbox: Union[npt.NDArray[np.float64], List[List[int]]],
150
+ mask: Union[npt.NDArray[np.bool_], List[List[bool]]],
151
+ ) -> Dict[str, npt.NDArray[np.float64]]:
152
+
153
+ # shape: (B, model_max_length, C)
154
+ bbox = np.array(bbox)
155
+ # shape: (B, model_max_length)
156
+ mask = np.array(mask)
157
+
158
+ assert bbox.ndim == 3
159
+ assert mask.ndim == 2
160
+
161
+ # S: model_max_length
162
+ B, S, C = bbox.shape
163
+
164
+ # shape: batch_bbox (B, S, C), batch_mask (B, S) -> (B, S, 1) -> (B, S, C)
165
+ bbox[np.repeat(~mask[:, :, None], axis=2, repeats=C)] = 0.0
166
+ # shape: (C, B, S)
167
+ bbox = bbox.transpose(2, 0, 1)
168
+
169
+ A = self.__calculate_a1_ai(bbox)
170
+
171
+ # shape: (B,)
172
+ score_ac_layout_gan = self._compute_ac_layout_gan(S=S, batch_mask=mask, **A)
173
+ # shape: (B,)
174
+ score_layout_gan_pp = self._compute_layout_gan_pp(
175
+ score_ac_layout_gan=score_ac_layout_gan, batch_mask=mask
176
+ )
177
+ # shape: (B,)
178
+ score_layout_gan = self._compute_layout_gan(B=B, S=S, ai=A["ai"])
179
+
180
+ return {
181
+ "overlap-ACLayoutGAN": score_ac_layout_gan,
182
+ "overlap-LayoutGAN++": score_layout_gan_pp,
183
+ "overlap-LayoutGAN": score_layout_gan,
184
+ }