Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import os | |
import shutil | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
import imageio | |
import uuid | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
def start_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
print(f'Creating user directory: {user_dir}') | |
os.makedirs(user_dir, exist_ok=True) | |
def end_session(req: gr.Request): | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
print(f'Removing user directory: {user_dir}') | |
shutil.rmtree(user_dir) | |
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]: | |
processed_image = pipeline.preprocess_image(image) | |
return processed_image | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
"""Get the random seed.""" | |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
def image_to_3d( | |
image: Image.Image, | |
seed: int, | |
ss_guidance_strength: float, | |
ss_sampling_steps: int, | |
slat_guidance_strength: float, | |
slat_sampling_steps: int, | |
req: gr.Request, | |
) -> Tuple[str, str, str]: | |
""" | |
Convert an image to a 3D model and save both video preview and full-quality GLB. | |
Returns: | |
Tuple[str, str, str]: (video_path, glb_path, download_path) | |
""" | |
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) | |
outputs = pipeline.run( | |
image, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
# Generate and save video preview | |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
trial_id = str(uuid.uuid4()) | |
video_path = os.path.join(user_dir, f"{trial_id}.mp4") | |
imageio.mimsave(video_path, video, fps=15) | |
# Save full-quality GLB directly from the generated mesh | |
glb = postprocessing_utils.to_glb( | |
outputs['gaussian'][0], | |
outputs['mesh'][0], | |
simplify=0.0, # No simplification | |
texture_size=2048, # Maximum texture resolution | |
verbose=False | |
) | |
glb_path = os.path.join(user_dir, f"{trial_id}_full.glb") | |
glb.export(glb_path) | |
torch.cuda.empty_cache() | |
return video_path, glb_path, glb_path | |
with gr.Blocks(delete_cache=(600, 600)) as demo: | |
gr.Markdown(""" | |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/) | |
* Upload an image and click "Generate" to create a high-quality 3D model | |
* Once generation is complete, you can download the full-quality GLB file | |
* The model will be in maximum quality with no reduction applied | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300) | |
with gr.Accordion(label="Generation Settings", open=False): | |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Markdown("Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1) | |
gr.Markdown("Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1) | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset Preview", autoplay=True, loop=True, height=300) | |
model_output = LitModel3D(label="3D Model Preview", exposure=20.0, height=300) | |
download_glb = gr.DownloadButton(label="Download Full-Quality GLB", interactive=False) | |
# Example images | |
with gr.Row(): | |
examples = gr.Examples( | |
examples=[ | |
f'assets/example_image/{image}' | |
for image in os.listdir("assets/example_image") | |
], | |
inputs=[image_prompt], | |
fn=preprocess_image, | |
outputs=[image_prompt], | |
run_on_click=True, | |
examples_per_page=64, | |
) | |
# Event handlers | |
demo.load(start_session) | |
demo.unload(end_session) | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[image_prompt], | |
) | |
generate_btn.click( | |
get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=[seed], | |
).then( | |
image_to_3d, | |
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[video_output, model_output, download_glb], | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_glb], | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") | |
pipeline.cuda() | |
try: | |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg | |
except: | |
pass | |
demo.launch() |