Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse fileslet's try a different approach
app.py
CHANGED
@@ -16,96 +16,26 @@ from trellis.pipelines import TrellisImageTo3DPipeline
|
|
16 |
from trellis.representations import Gaussian, MeshExtractResult
|
17 |
from trellis.utils import render_utils, postprocessing_utils
|
18 |
|
19 |
-
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
22 |
os.makedirs(TMP_DIR, exist_ok=True)
|
23 |
|
24 |
-
|
25 |
def start_session(req: gr.Request):
|
26 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
27 |
print(f'Creating user directory: {user_dir}')
|
28 |
os.makedirs(user_dir, exist_ok=True)
|
29 |
-
|
30 |
def end_session(req: gr.Request):
|
31 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
32 |
print(f'Removing user directory: {user_dir}')
|
33 |
shutil.rmtree(user_dir)
|
34 |
|
35 |
-
|
36 |
-
def preprocess_image(image: Image.Image) -> Image.Image:
|
37 |
-
"""
|
38 |
-
Preprocess the input image.
|
39 |
-
|
40 |
-
Args:
|
41 |
-
image (Image.Image): The input image.
|
42 |
-
|
43 |
-
Returns:
|
44 |
-
Image.Image: The preprocessed image.
|
45 |
-
"""
|
46 |
-
# Validate image
|
47 |
-
if image is None:
|
48 |
-
raise ValueError("No image provided.")
|
49 |
-
if image.mode != "RGBA":
|
50 |
-
image = image.convert("RGBA")
|
51 |
processed_image = pipeline.preprocess_image(image)
|
52 |
return processed_image
|
53 |
|
54 |
-
# State Packing and Unpacking Functions
|
55 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
56 |
-
return {
|
57 |
-
'gaussian': {
|
58 |
-
**gs.init_params,
|
59 |
-
'_xyz': gs._xyz.cpu().numpy(),
|
60 |
-
'_features_dc': gs._features_dc.cpu().numpy(),
|
61 |
-
'_scaling': gs._scaling.cpu().numpy(),
|
62 |
-
'_rotation': gs._rotation.cpu().numpy(),
|
63 |
-
'_opacity': gs._opacity.cpu().numpy(),
|
64 |
-
},
|
65 |
-
'mesh': {
|
66 |
-
'vertices': mesh.vertices.cpu().numpy(),
|
67 |
-
'faces': mesh.faces.cpu().numpy(),
|
68 |
-
},
|
69 |
-
'trial_id': trial_id,
|
70 |
-
}
|
71 |
-
|
72 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
73 |
-
gs = Gaussian(
|
74 |
-
aabb=state['gaussian']['aabb'],
|
75 |
-
sh_degree=state['gaussian']['sh_degree'],
|
76 |
-
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
77 |
-
scaling_bias=state['gaussian']['scaling_bias'],
|
78 |
-
opacity_bias=state['gaussian']['opacity_bias'],
|
79 |
-
scaling_activation=state['gaussian']['scaling_activation'],
|
80 |
-
)
|
81 |
-
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
82 |
-
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
83 |
-
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
84 |
-
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
85 |
-
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
86 |
-
|
87 |
-
mesh = edict(
|
88 |
-
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
89 |
-
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
90 |
-
)
|
91 |
-
|
92 |
-
return gs, mesh, state['trial_id']
|
93 |
-
|
94 |
-
# Seed Management Function
|
95 |
-
def get_seed(randomize_seed: bool, seed: int) -> int:
|
96 |
-
"""
|
97 |
-
Get the random seed.
|
98 |
-
|
99 |
-
Args:
|
100 |
-
randomize_seed (bool): Whether to randomize the seed.
|
101 |
-
seed (int): The provided seed value.
|
102 |
-
|
103 |
-
Returns:
|
104 |
-
int: The final seed to use.
|
105 |
-
"""
|
106 |
-
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
107 |
-
|
108 |
-
# Core 3D Generation Function
|
109 |
@spaces.GPU
|
110 |
def image_to_3d(
|
111 |
image: Image.Image,
|
@@ -115,21 +45,12 @@ def image_to_3d(
|
|
115 |
slat_guidance_strength: float,
|
116 |
slat_sampling_steps: int,
|
117 |
req: gr.Request,
|
118 |
-
) -> Tuple[
|
119 |
"""
|
120 |
-
Convert an image to a 3D model.
|
121 |
-
|
122 |
-
Args:
|
123 |
-
image (Image.Image): The input image.
|
124 |
-
seed (int): The random seed.
|
125 |
-
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
126 |
-
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
127 |
-
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
128 |
-
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
129 |
-
req (gr.Request): Gradio request object.
|
130 |
-
|
131 |
Returns:
|
132 |
-
Tuple[
|
133 |
"""
|
134 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
135 |
outputs = pipeline.run(
|
@@ -146,134 +67,61 @@ def image_to_3d(
|
|
146 |
"cfg_strength": slat_guidance_strength,
|
147 |
},
|
148 |
)
|
|
|
|
|
149 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
150 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
151 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
152 |
-
trial_id = uuid.uuid4()
|
153 |
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
154 |
imageio.mimsave(video_path, video, fps=15)
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
req: gr.Request,
|
166 |
-
) -> Tuple[str, str]:
|
167 |
-
"""
|
168 |
-
Extract a GLB file from the 3D model.
|
169 |
-
|
170 |
-
Args:
|
171 |
-
state (dict): The state of the generated 3D model.
|
172 |
-
mesh_simplify (float): The mesh simplification factor.
|
173 |
-
texture_size (int): The texture resolution.
|
174 |
-
req (gr.Request): Gradio request object.
|
175 |
-
|
176 |
-
Returns:
|
177 |
-
Tuple[str, str]: The path to the extracted GLB file.
|
178 |
-
"""
|
179 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
180 |
-
gs, mesh, trial_id = unpack_state(state)
|
181 |
-
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
182 |
-
glb_path = os.path.join(user_dir, f"{trial_id}.glb")
|
183 |
-
glb.export(glb_path)
|
184 |
-
torch.cuda.empty_cache()
|
185 |
-
return glb_path, glb_path
|
186 |
-
|
187 |
-
# **Addition: High-Quality GLB Extraction Function**
|
188 |
-
@spaces.GPU
|
189 |
-
def extract_glb_high_quality(
|
190 |
-
state: dict,
|
191 |
-
req: gr.Request,
|
192 |
-
) -> Tuple[str, str]:
|
193 |
-
"""
|
194 |
-
Extract a high-quality GLB file from the 3D model without polygon reduction.
|
195 |
-
|
196 |
-
Args:
|
197 |
-
state (dict): The state of the generated 3D model.
|
198 |
-
req (gr.Request): Gradio request object.
|
199 |
-
|
200 |
-
Returns:
|
201 |
-
Tuple[str, str]: The path to the high-quality GLB file.
|
202 |
-
"""
|
203 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
204 |
-
gs, mesh, trial_id = unpack_state(state)
|
205 |
-
# Set simplify to 0.0 to disable polygon reduction
|
206 |
-
# Set texture_size to 2048 for maximum texture quality
|
207 |
-
glb = postprocessing_utils.to_glb(gs, mesh, simplify=0.0, texture_size=2048, verbose=False)
|
208 |
-
glb_path = os.path.join(user_dir, f"{trial_id}_high_quality.glb")
|
209 |
glb.export(glb_path)
|
|
|
210 |
torch.cuda.empty_cache()
|
211 |
-
return glb_path, glb_path
|
212 |
|
213 |
-
# Gradio Interface Definition
|
214 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
215 |
gr.Markdown("""
|
216 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
217 |
-
* Upload an image and click "Generate" to create a 3D
|
218 |
-
*
|
219 |
-
*
|
220 |
""")
|
221 |
|
222 |
with gr.Row():
|
223 |
with gr.Column():
|
224 |
-
# Image Input
|
225 |
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
226 |
|
227 |
-
# Generation Settings Accordion
|
228 |
with gr.Accordion(label="Generation Settings", open=False):
|
229 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
230 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
231 |
-
gr.Markdown("
|
232 |
with gr.Row():
|
233 |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
234 |
ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
|
235 |
-
gr.Markdown("
|
236 |
with gr.Row():
|
237 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
238 |
slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
|
239 |
|
240 |
-
# Generate Button
|
241 |
generate_btn = gr.Button("Generate")
|
242 |
-
|
243 |
-
# GLB Extraction Settings Accordion
|
244 |
-
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
245 |
-
mesh_simplify = gr.Slider(0.0, 0.98, label="Simplify", value=0.95, step=0.01)
|
246 |
-
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
247 |
-
|
248 |
-
# Existing Extract GLB Button
|
249 |
-
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
250 |
-
|
251 |
-
# **Addition: Download High Quality GLB Button**
|
252 |
-
extract_glb_high_quality_btn = gr.Button("Download High Quality GLB", interactive=False)
|
253 |
|
254 |
with gr.Column():
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
259 |
-
# Existing Download GLB Button
|
260 |
-
download_glb = gr.DownloadButton(
|
261 |
-
label="Download GLB",
|
262 |
-
# Removed 'file_count' to prevent runtime error
|
263 |
-
)
|
264 |
|
265 |
-
|
266 |
-
download_high_quality_glb = gr.DownloadButton(
|
267 |
-
label="Download High Quality GLB",
|
268 |
-
# Removed 'file_count' to prevent runtime error
|
269 |
-
)
|
270 |
-
|
271 |
-
# State Variables
|
272 |
-
output_buf = gr.State()
|
273 |
-
glb_path_state = gr.State() # For standard GLB
|
274 |
-
glb_high_quality_path_state = gr.State() # For high-quality GLB
|
275 |
-
|
276 |
-
# Example Images
|
277 |
with gr.Row():
|
278 |
examples = gr.Examples(
|
279 |
examples=[
|
@@ -287,7 +135,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
287 |
examples_per_page=64,
|
288 |
)
|
289 |
|
290 |
-
# Event
|
291 |
demo.load(start_session)
|
292 |
demo.unload(end_session)
|
293 |
|
@@ -301,59 +149,21 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
301 |
get_seed,
|
302 |
inputs=[randomize_seed, seed],
|
303 |
outputs=[seed],
|
304 |
-
concurrency_limit=1 # Set concurrency limit for Generate
|
305 |
).then(
|
306 |
image_to_3d,
|
307 |
-
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps
|
308 |
-
outputs=[
|
309 |
-
concurrency_limit=1 # Set concurrency limit for image_to_3d
|
310 |
-
).then(
|
311 |
-
# Enable the Extract GLB and Download High Quality GLB buttons after generation
|
312 |
-
lambda: (True, True),
|
313 |
-
outputs=[extract_glb_btn, extract_glb_high_quality_btn],
|
314 |
-
)
|
315 |
-
|
316 |
-
video_output.clear(
|
317 |
-
lambda: (False, False),
|
318 |
-
outputs=[extract_glb_btn, extract_glb_high_quality_btn],
|
319 |
-
)
|
320 |
-
|
321 |
-
extract_glb_btn.click(
|
322 |
-
extract_glb,
|
323 |
-
inputs=[output_buf, mesh_simplify, texture_size, gr.Request()],
|
324 |
-
outputs=[model_output, glb_path_state],
|
325 |
-
concurrency_limit=1 # Set concurrency limit for extract_glb
|
326 |
).then(
|
327 |
-
lambda
|
328 |
-
inputs=[glb_path_state],
|
329 |
outputs=[download_glb],
|
330 |
)
|
331 |
|
332 |
-
# **Addition: High-Quality GLB Extraction and Download**
|
333 |
-
extract_glb_high_quality_btn.click(
|
334 |
-
extract_glb_high_quality,
|
335 |
-
inputs=[output_buf, gr.Request()],
|
336 |
-
outputs=[model_output, glb_high_quality_path_state],
|
337 |
-
concurrency_limit=1 # Set concurrency limit for extract_glb_high_quality
|
338 |
-
).then(
|
339 |
-
lambda glb_path: glb_path if glb_path else "",
|
340 |
-
inputs=[glb_high_quality_path_state],
|
341 |
-
outputs=[download_high_quality_glb],
|
342 |
-
)
|
343 |
-
|
344 |
-
model_output.clear(
|
345 |
-
lambda: (gr.File.update(value=None), gr.File.update(value=None)),
|
346 |
-
outputs=[download_glb, download_high_quality_glb],
|
347 |
-
)
|
348 |
-
|
349 |
# Launch the Gradio app
|
350 |
if __name__ == "__main__":
|
351 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
352 |
pipeline.cuda()
|
353 |
try:
|
354 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
355 |
-
except
|
356 |
-
|
357 |
-
|
358 |
-
# Configure Gradio's queue without deprecated parameters
|
359 |
-
demo.queue().launch()
|
|
|
16 |
from trellis.representations import Gaussian, MeshExtractResult
|
17 |
from trellis.utils import render_utils, postprocessing_utils
|
18 |
|
19 |
+
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
22 |
os.makedirs(TMP_DIR, exist_ok=True)
|
23 |
|
24 |
+
|
25 |
def start_session(req: gr.Request):
|
26 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
27 |
print(f'Creating user directory: {user_dir}')
|
28 |
os.makedirs(user_dir, exist_ok=True)
|
29 |
+
|
30 |
def end_session(req: gr.Request):
|
31 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
32 |
print(f'Removing user directory: {user_dir}')
|
33 |
shutil.rmtree(user_dir)
|
34 |
|
35 |
+
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
processed_image = pipeline.preprocess_image(image)
|
37 |
return processed_image
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
@spaces.GPU
|
40 |
def image_to_3d(
|
41 |
image: Image.Image,
|
|
|
45 |
slat_guidance_strength: float,
|
46 |
slat_sampling_steps: int,
|
47 |
req: gr.Request,
|
48 |
+
) -> Tuple[str, str, str]:
|
49 |
"""
|
50 |
+
Convert an image to a 3D model and save both video preview and full-quality GLB.
|
51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
Returns:
|
53 |
+
Tuple[str, str, str]: (video_path, glb_path, download_path)
|
54 |
"""
|
55 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
56 |
outputs = pipeline.run(
|
|
|
67 |
"cfg_strength": slat_guidance_strength,
|
68 |
},
|
69 |
)
|
70 |
+
|
71 |
+
# Generate and save video preview
|
72 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
73 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
74 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
75 |
+
trial_id = str(uuid.uuid4())
|
76 |
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
77 |
imageio.mimsave(video_path, video, fps=15)
|
78 |
+
|
79 |
+
# Save full-quality GLB directly from the generated mesh
|
80 |
+
glb = postprocessing_utils.to_glb(
|
81 |
+
outputs['gaussian'][0],
|
82 |
+
outputs['mesh'][0],
|
83 |
+
simplify=0.0, # No simplification
|
84 |
+
texture_size=2048, # Maximum texture resolution
|
85 |
+
verbose=False
|
86 |
+
)
|
87 |
+
glb_path = os.path.join(user_dir, f"{trial_id}_full.glb")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
glb.export(glb_path)
|
89 |
+
|
90 |
torch.cuda.empty_cache()
|
91 |
+
return video_path, glb_path, glb_path
|
92 |
|
|
|
93 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
94 |
gr.Markdown("""
|
95 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
96 |
+
* Upload an image and click "Generate" to create a high-quality 3D model
|
97 |
+
* Once generation is complete, you can download the full-quality GLB file
|
98 |
+
* The model will be in maximum quality with no reduction applied
|
99 |
""")
|
100 |
|
101 |
with gr.Row():
|
102 |
with gr.Column():
|
|
|
103 |
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
104 |
|
|
|
105 |
with gr.Accordion(label="Generation Settings", open=False):
|
106 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
107 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
108 |
+
gr.Markdown("Stage 1: Sparse Structure Generation")
|
109 |
with gr.Row():
|
110 |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
111 |
ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
|
112 |
+
gr.Markdown("Stage 2: Structured Latent Generation")
|
113 |
with gr.Row():
|
114 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
115 |
slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
|
116 |
|
|
|
117 |
generate_btn = gr.Button("Generate")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
with gr.Column():
|
120 |
+
video_output = gr.Video(label="Generated 3D Asset Preview", autoplay=True, loop=True, height=300)
|
121 |
+
model_output = LitModel3D(label="3D Model Preview", exposure=20.0, height=300)
|
122 |
+
download_glb = gr.DownloadButton(label="Download Full-Quality GLB", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
# Example images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
with gr.Row():
|
126 |
examples = gr.Examples(
|
127 |
examples=[
|
|
|
135 |
examples_per_page=64,
|
136 |
)
|
137 |
|
138 |
+
# Event handlers
|
139 |
demo.load(start_session)
|
140 |
demo.unload(end_session)
|
141 |
|
|
|
149 |
get_seed,
|
150 |
inputs=[randomize_seed, seed],
|
151 |
outputs=[seed],
|
|
|
152 |
).then(
|
153 |
image_to_3d,
|
154 |
+
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
155 |
+
outputs=[video_output, model_output, download_glb],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
).then(
|
157 |
+
lambda: gr.Button(interactive=True),
|
|
|
158 |
outputs=[download_glb],
|
159 |
)
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
# Launch the Gradio app
|
162 |
if __name__ == "__main__":
|
163 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
164 |
pipeline.cuda()
|
165 |
try:
|
166 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
167 |
+
except:
|
168 |
+
pass
|
169 |
+
demo.launch()
|
|
|
|