Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesthis should fix things
app.py
CHANGED
@@ -16,24 +16,25 @@ from trellis.pipelines import TrellisImageTo3DPipeline
|
|
16 |
from trellis.representations import Gaussian, MeshExtractResult
|
17 |
from trellis.utils import render_utils, postprocessing_utils
|
18 |
|
19 |
-
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
22 |
os.makedirs(TMP_DIR, exist_ok=True)
|
23 |
|
24 |
-
|
25 |
def start_session(req: gr.Request):
|
26 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
27 |
print(f'Creating user directory: {user_dir}')
|
28 |
os.makedirs(user_dir, exist_ok=True)
|
29 |
|
|
|
30 |
def end_session(req: gr.Request):
|
31 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
32 |
print(f'Removing user directory: {user_dir}')
|
33 |
shutil.rmtree(user_dir)
|
34 |
|
35 |
-
|
36 |
-
def preprocess_image(image: Image.Image) -> Image.Image:
|
37 |
"""
|
38 |
Preprocess the input image.
|
39 |
|
@@ -41,12 +42,13 @@ def preprocess_image(image: Image.Image) -> Image.Image:
|
|
41 |
image (Image.Image): The input image.
|
42 |
|
43 |
Returns:
|
|
|
44 |
Image.Image: The preprocessed image.
|
45 |
"""
|
46 |
processed_image = pipeline.preprocess_image(image)
|
47 |
return processed_image
|
48 |
|
49 |
-
|
50 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
51 |
return {
|
52 |
'gaussian': {
|
@@ -64,6 +66,7 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
|
64 |
'trial_id': trial_id,
|
65 |
}
|
66 |
|
|
|
67 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
68 |
gs = Gaussian(
|
69 |
aabb=state['gaussian']['aabb'],
|
@@ -86,21 +89,14 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
86 |
|
87 |
return gs, mesh, state['trial_id']
|
88 |
|
89 |
-
|
90 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
91 |
"""
|
92 |
Get the random seed.
|
93 |
-
|
94 |
-
Args:
|
95 |
-
randomize_seed (bool): Whether to randomize the seed.
|
96 |
-
seed (int): The provided seed value.
|
97 |
-
|
98 |
-
Returns:
|
99 |
-
int: The final seed to use.
|
100 |
"""
|
101 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
102 |
|
103 |
-
|
104 |
@spaces.GPU
|
105 |
def image_to_3d(
|
106 |
image: Image.Image,
|
@@ -121,10 +117,10 @@ def image_to_3d(
|
|
121 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
122 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
123 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
124 |
-
req (gr.Request): Gradio request object.
|
125 |
|
126 |
Returns:
|
127 |
-
|
|
|
128 |
"""
|
129 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
130 |
outputs = pipeline.run(
|
@@ -151,7 +147,7 @@ def image_to_3d(
|
|
151 |
torch.cuda.empty_cache()
|
152 |
return state, video_path
|
153 |
|
154 |
-
|
155 |
@spaces.GPU
|
156 |
def extract_glb(
|
157 |
state: dict,
|
@@ -166,10 +162,9 @@ def extract_glb(
|
|
166 |
state (dict): The state of the generated 3D model.
|
167 |
mesh_simplify (float): The mesh simplification factor.
|
168 |
texture_size (int): The texture resolution.
|
169 |
-
req (gr.Request): Gradio request object.
|
170 |
|
171 |
Returns:
|
172 |
-
|
173 |
"""
|
174 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
175 |
gs, mesh, trial_id = unpack_state(state)
|
@@ -179,7 +174,8 @@ def extract_glb(
|
|
179 |
torch.cuda.empty_cache()
|
180 |
return glb_path, glb_path
|
181 |
|
182 |
-
|
|
|
183 |
@spaces.GPU
|
184 |
def extract_glb_high_quality(
|
185 |
state: dict,
|
@@ -205,7 +201,7 @@ def extract_glb_high_quality(
|
|
205 |
torch.cuda.empty_cache()
|
206 |
return glb_path, glb_path
|
207 |
|
208 |
-
|
209 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
210 |
gr.Markdown("""
|
211 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
@@ -213,121 +209,53 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
213 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
214 |
* **New:** Click "Download High Quality GLB" to download the GLB file without any polygon reduction and with maximum texture quality.
|
215 |
""")
|
216 |
-
|
217 |
with gr.Row():
|
218 |
with gr.Column():
|
219 |
-
|
220 |
-
image_prompt = gr.Image(
|
221 |
-
label="Image Prompt",
|
222 |
-
format="png",
|
223 |
-
image_mode="RGBA",
|
224 |
-
type="pil",
|
225 |
-
height=300
|
226 |
-
)
|
227 |
|
228 |
-
# Generation Settings Accordion
|
229 |
with gr.Accordion(label="Generation Settings", open=False):
|
230 |
-
seed = gr.Slider(
|
231 |
-
|
232 |
-
|
233 |
-
label="Seed",
|
234 |
-
value=0,
|
235 |
-
step=1
|
236 |
-
)
|
237 |
-
randomize_seed = gr.Checkbox(
|
238 |
-
label="Randomize Seed",
|
239 |
-
value=True
|
240 |
-
)
|
241 |
-
gr.Markdown("### Stage 1: Sparse Structure Generation")
|
242 |
with gr.Row():
|
243 |
-
ss_guidance_strength = gr.Slider(
|
244 |
-
|
245 |
-
|
246 |
-
label="Guidance Strength",
|
247 |
-
value=7.5,
|
248 |
-
step=0.1
|
249 |
-
)
|
250 |
-
ss_sampling_steps = gr.Slider(
|
251 |
-
1,
|
252 |
-
500,
|
253 |
-
label="Sampling Steps",
|
254 |
-
value=12,
|
255 |
-
step=1
|
256 |
-
)
|
257 |
-
gr.Markdown("### Stage 2: Structured Latent Generation")
|
258 |
with gr.Row():
|
259 |
-
slat_guidance_strength = gr.Slider(
|
260 |
-
|
261 |
-
|
262 |
-
label="Guidance Strength",
|
263 |
-
value=3.0,
|
264 |
-
step=0.1
|
265 |
-
)
|
266 |
-
slat_sampling_steps = gr.Slider(
|
267 |
-
1,
|
268 |
-
500,
|
269 |
-
label="Sampling Steps",
|
270 |
-
value=12,
|
271 |
-
step=1
|
272 |
-
)
|
273 |
-
|
274 |
-
# Generate Button
|
275 |
generate_btn = gr.Button("Generate")
|
276 |
|
277 |
-
# GLB Extraction Settings Accordion
|
278 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
279 |
-
mesh_simplify = gr.Slider(
|
280 |
-
|
281 |
-
0.98,
|
282 |
-
label="Simplify",
|
283 |
-
value=0.95,
|
284 |
-
step=0.01
|
285 |
-
)
|
286 |
-
texture_size = gr.Slider(
|
287 |
-
512,
|
288 |
-
2048,
|
289 |
-
label="Texture Size",
|
290 |
-
value=1024,
|
291 |
-
step=512
|
292 |
-
)
|
293 |
|
294 |
-
|
295 |
-
extract_glb_btn = gr.Button("Extract GLB", interactive=True)
|
296 |
|
297 |
-
# **
|
298 |
-
|
299 |
|
300 |
with gr.Column():
|
301 |
-
|
302 |
-
|
303 |
-
label="Generated 3D Asset",
|
304 |
-
autoplay=True,
|
305 |
-
loop=True,
|
306 |
-
height=300
|
307 |
-
)
|
308 |
-
# 3D Model Display
|
309 |
-
model_output = LitModel3D(
|
310 |
-
label="Extracted GLB",
|
311 |
-
exposure=20.0,
|
312 |
-
height=300
|
313 |
-
)
|
314 |
-
# Existing Download GLB Button
|
315 |
download_glb = gr.DownloadButton(
|
316 |
label="Download GLB",
|
317 |
-
file_count
|
318 |
)
|
319 |
-
|
|
|
320 |
download_high_quality_glb = gr.DownloadButton(
|
321 |
label="Download High Quality GLB",
|
322 |
-
file_count
|
323 |
)
|
324 |
|
325 |
-
# State Variables
|
326 |
output_buf = gr.State()
|
327 |
glb_path_state = gr.State() # For standard GLB
|
328 |
glb_high_quality_path_state = gr.State() # For high-quality GLB
|
329 |
|
330 |
-
# Example
|
331 |
with gr.Row():
|
332 |
examples = gr.Examples(
|
333 |
examples=[
|
@@ -341,39 +269,35 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
341 |
examples_per_page=64,
|
342 |
)
|
343 |
|
344 |
-
#
|
345 |
demo.load(start_session)
|
346 |
demo.unload(end_session)
|
347 |
|
348 |
-
# Image Upload Handler
|
349 |
image_prompt.upload(
|
350 |
preprocess_image,
|
351 |
inputs=[image_prompt],
|
352 |
outputs=[image_prompt],
|
353 |
)
|
354 |
|
355 |
-
# Generate Button Click Handler
|
356 |
generate_btn.click(
|
357 |
get_seed,
|
358 |
inputs=[randomize_seed, seed],
|
359 |
outputs=[seed],
|
360 |
).then(
|
361 |
image_to_3d,
|
362 |
-
inputs=[
|
363 |
-
image_prompt,
|
364 |
-
seed,
|
365 |
-
ss_guidance_strength,
|
366 |
-
ss_sampling_steps,
|
367 |
-
slat_guidance_strength,
|
368 |
-
slat_sampling_steps
|
369 |
-
],
|
370 |
outputs=[output_buf, video_output],
|
371 |
).then(
|
372 |
-
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
)
|
375 |
|
376 |
-
# Existing Extract GLB Button Click Handler
|
377 |
extract_glb_btn.click(
|
378 |
extract_glb,
|
379 |
inputs=[output_buf, mesh_simplify, texture_size],
|
@@ -384,8 +308,8 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
384 |
outputs=[download_glb],
|
385 |
)
|
386 |
|
387 |
-
# **
|
388 |
-
|
389 |
extract_glb_high_quality,
|
390 |
inputs=[output_buf],
|
391 |
outputs=[model_output, glb_high_quality_path_state],
|
@@ -395,25 +319,19 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
395 |
outputs=[download_high_quality_glb],
|
396 |
)
|
397 |
|
398 |
-
# Handle Clearing of Video Output
|
399 |
-
video_output.clear(
|
400 |
-
lambda: (gr.Button.update(interactive=True), gr.Button.update(interactive=True)),
|
401 |
-
outputs=[extract_glb_btn, download_high_quality_glb_btn],
|
402 |
-
)
|
403 |
-
|
404 |
-
# Handle Clearing of Model Output
|
405 |
model_output.clear(
|
406 |
lambda: (gr.File.update(value=None), gr.File.update(value=None)),
|
407 |
outputs=[download_glb, download_high_quality_glb],
|
408 |
)
|
409 |
|
410 |
-
|
|
|
411 |
if __name__ == "__main__":
|
412 |
-
# Initialize the pipeline
|
413 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
414 |
pipeline.cuda()
|
415 |
try:
|
416 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
417 |
except:
|
418 |
pass
|
419 |
-
|
|
|
|
16 |
from trellis.representations import Gaussian, MeshExtractResult
|
17 |
from trellis.utils import render_utils, postprocessing_utils
|
18 |
|
19 |
+
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
22 |
os.makedirs(TMP_DIR, exist_ok=True)
|
23 |
|
24 |
+
|
25 |
def start_session(req: gr.Request):
|
26 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
27 |
print(f'Creating user directory: {user_dir}')
|
28 |
os.makedirs(user_dir, exist_ok=True)
|
29 |
|
30 |
+
|
31 |
def end_session(req: gr.Request):
|
32 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
33 |
print(f'Removing user directory: {user_dir}')
|
34 |
shutil.rmtree(user_dir)
|
35 |
|
36 |
+
|
37 |
+
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
38 |
"""
|
39 |
Preprocess the input image.
|
40 |
|
|
|
42 |
image (Image.Image): The input image.
|
43 |
|
44 |
Returns:
|
45 |
+
str: uuid of the trial.
|
46 |
Image.Image: The preprocessed image.
|
47 |
"""
|
48 |
processed_image = pipeline.preprocess_image(image)
|
49 |
return processed_image
|
50 |
|
51 |
+
|
52 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
53 |
return {
|
54 |
'gaussian': {
|
|
|
66 |
'trial_id': trial_id,
|
67 |
}
|
68 |
|
69 |
+
|
70 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
71 |
gs = Gaussian(
|
72 |
aabb=state['gaussian']['aabb'],
|
|
|
89 |
|
90 |
return gs, mesh, state['trial_id']
|
91 |
|
92 |
+
|
93 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
94 |
"""
|
95 |
Get the random seed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
"""
|
97 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
98 |
|
99 |
+
|
100 |
@spaces.GPU
|
101 |
def image_to_3d(
|
102 |
image: Image.Image,
|
|
|
117 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
118 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
119 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
|
|
120 |
|
121 |
Returns:
|
122 |
+
dict: The information of the generated 3D model.
|
123 |
+
str: The path to the video of the 3D model.
|
124 |
"""
|
125 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
126 |
outputs = pipeline.run(
|
|
|
147 |
torch.cuda.empty_cache()
|
148 |
return state, video_path
|
149 |
|
150 |
+
|
151 |
@spaces.GPU
|
152 |
def extract_glb(
|
153 |
state: dict,
|
|
|
162 |
state (dict): The state of the generated 3D model.
|
163 |
mesh_simplify (float): The mesh simplification factor.
|
164 |
texture_size (int): The texture resolution.
|
|
|
165 |
|
166 |
Returns:
|
167 |
+
str: The path to the extracted GLB file.
|
168 |
"""
|
169 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
170 |
gs, mesh, trial_id = unpack_state(state)
|
|
|
174 |
torch.cuda.empty_cache()
|
175 |
return glb_path, glb_path
|
176 |
|
177 |
+
|
178 |
+
# **Addition: High-Quality GLB Extraction Function**
|
179 |
@spaces.GPU
|
180 |
def extract_glb_high_quality(
|
181 |
state: dict,
|
|
|
201 |
torch.cuda.empty_cache()
|
202 |
return glb_path, glb_path
|
203 |
|
204 |
+
|
205 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
206 |
gr.Markdown("""
|
207 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
|
|
209 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
210 |
* **New:** Click "Download High Quality GLB" to download the GLB file without any polygon reduction and with maximum texture quality.
|
211 |
""")
|
212 |
+
|
213 |
with gr.Row():
|
214 |
with gr.Column():
|
215 |
+
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
|
|
217 |
with gr.Accordion(label="Generation Settings", open=False):
|
218 |
+
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
219 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
220 |
+
gr.Markdown("Stage 1: Sparse Structure Generation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
with gr.Row():
|
222 |
+
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
223 |
+
ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
|
224 |
+
gr.Markdown("Stage 2: Structured Latent Generation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
with gr.Row():
|
226 |
+
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
227 |
+
slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
|
228 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
generate_btn = gr.Button("Generate")
|
230 |
|
|
|
231 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
232 |
+
mesh_simplify = gr.Slider(0.0, 0.98, label="Simplify", value=0.95, step=0.01)
|
233 |
+
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
+
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
|
|
236 |
|
237 |
+
# **Addition: Download High Quality GLB Button**
|
238 |
+
extract_glb_high_quality_btn = gr.Button("Download High Quality GLB", interactive=False)
|
239 |
|
240 |
with gr.Column():
|
241 |
+
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
242 |
+
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
download_glb = gr.DownloadButton(
|
244 |
label="Download GLB",
|
245 |
+
# Removed 'file_count' to prevent runtime error
|
246 |
)
|
247 |
+
|
248 |
+
# **Addition: Download High Quality GLB DownloadButton**
|
249 |
download_high_quality_glb = gr.DownloadButton(
|
250 |
label="Download High Quality GLB",
|
251 |
+
# Removed 'file_count' to prevent runtime error
|
252 |
)
|
253 |
|
|
|
254 |
output_buf = gr.State()
|
255 |
glb_path_state = gr.State() # For standard GLB
|
256 |
glb_high_quality_path_state = gr.State() # For high-quality GLB
|
257 |
|
258 |
+
# Example images at the bottom of the page
|
259 |
with gr.Row():
|
260 |
examples = gr.Examples(
|
261 |
examples=[
|
|
|
269 |
examples_per_page=64,
|
270 |
)
|
271 |
|
272 |
+
# Handlers
|
273 |
demo.load(start_session)
|
274 |
demo.unload(end_session)
|
275 |
|
|
|
276 |
image_prompt.upload(
|
277 |
preprocess_image,
|
278 |
inputs=[image_prompt],
|
279 |
outputs=[image_prompt],
|
280 |
)
|
281 |
|
|
|
282 |
generate_btn.click(
|
283 |
get_seed,
|
284 |
inputs=[randomize_seed, seed],
|
285 |
outputs=[seed],
|
286 |
).then(
|
287 |
image_to_3d,
|
288 |
+
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
outputs=[output_buf, video_output],
|
290 |
).then(
|
291 |
+
# Enable the Extract GLB and Download High Quality GLB buttons after generation
|
292 |
+
lambda: (gr.Button.update(interactive=True), gr.Button.update(interactive=True)),
|
293 |
+
outputs=[extract_glb_btn, extract_glb_high_quality_btn],
|
294 |
+
)
|
295 |
+
|
296 |
+
video_output.clear(
|
297 |
+
lambda: (gr.Button.update(interactive=False), gr.Button.update(interactive=False)),
|
298 |
+
outputs=[extract_glb_btn, extract_glb_high_quality_btn],
|
299 |
)
|
300 |
|
|
|
301 |
extract_glb_btn.click(
|
302 |
extract_glb,
|
303 |
inputs=[output_buf, mesh_simplify, texture_size],
|
|
|
308 |
outputs=[download_glb],
|
309 |
)
|
310 |
|
311 |
+
# **Addition: High-Quality GLB Extraction and Download**
|
312 |
+
extract_glb_high_quality_btn.click(
|
313 |
extract_glb_high_quality,
|
314 |
inputs=[output_buf],
|
315 |
outputs=[model_output, glb_high_quality_path_state],
|
|
|
319 |
outputs=[download_high_quality_glb],
|
320 |
)
|
321 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
model_output.clear(
|
323 |
lambda: (gr.File.update(value=None), gr.File.update(value=None)),
|
324 |
outputs=[download_glb, download_high_quality_glb],
|
325 |
)
|
326 |
|
327 |
+
|
328 |
+
# **Addition: Configure Gradio's Queue to Handle Long GPU Operations**
|
329 |
if __name__ == "__main__":
|
|
|
330 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
331 |
pipeline.cuda()
|
332 |
try:
|
333 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
334 |
except:
|
335 |
pass
|
336 |
+
# Configure Gradio's queue with appropriate settings
|
337 |
+
demo.queue(concurrency_count=1, max_size=10, timeout=600).launch()
|