Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesno optimisations let's see if it works
app.py
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_litmodel3d import LitModel3D
|
3 |
-
|
4 |
import os
|
5 |
import shutil
|
6 |
os.environ['SPCONV_ALGO'] = 'native'
|
@@ -14,6 +12,7 @@ from PIL import Image
|
|
14 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
15 |
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
|
|
17 |
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -75,7 +74,6 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
75 |
return gs, mesh, state['trial_id']
|
76 |
|
77 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
78 |
-
"""Get the random seed."""
|
79 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
80 |
|
81 |
def image_to_3d(
|
@@ -86,141 +84,64 @@ def image_to_3d(
|
|
86 |
slat_guidance_strength: float,
|
87 |
slat_sampling_steps: int,
|
88 |
req: gr.Request,
|
89 |
-
progress: gr.Progress = gr.Progress()
|
90 |
) -> Tuple[dict, str, str, str]:
|
91 |
-
"""
|
92 |
-
Convert an image to a 3D model with improved memory management and progress tracking.
|
93 |
-
"""
|
94 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
progress(0.4, desc="Generating video preview...")
|
119 |
-
# Generate video frames in batches to manage memory
|
120 |
-
batch_size = 30 # Process 30 frames at a time
|
121 |
-
num_frames = 120
|
122 |
-
video = []
|
123 |
-
video_geo = []
|
124 |
-
|
125 |
-
for i in range(0, num_frames, batch_size):
|
126 |
-
end_idx = min(i + batch_size, num_frames)
|
127 |
-
batch_frames = render_utils.render_video(
|
128 |
-
outputs['gaussian'][0],
|
129 |
-
num_frames=end_idx - i,
|
130 |
-
start_frame=i
|
131 |
-
)['color']
|
132 |
-
batch_geo = render_utils.render_video(
|
133 |
-
outputs['mesh'][0],
|
134 |
-
num_frames=end_idx - i,
|
135 |
-
start_frame=i
|
136 |
-
)['normal']
|
137 |
-
|
138 |
-
video.extend(batch_frames)
|
139 |
-
video_geo.extend(batch_geo)
|
140 |
-
|
141 |
-
# Clear cache after each batch
|
142 |
-
torch.cuda.empty_cache()
|
143 |
-
progress(0.4 + (0.3 * i / num_frames), desc=f"Rendering frames {i} to {end_idx}...")
|
144 |
-
|
145 |
-
# Combine video frames
|
146 |
-
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
147 |
-
|
148 |
-
# Generate unique ID and save video
|
149 |
-
trial_id = str(uuid.uuid4())
|
150 |
-
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
151 |
-
progress(0.7, desc="Saving video...")
|
152 |
-
imageio.mimsave(video_path, video, fps=15)
|
153 |
-
|
154 |
-
# Clear video data from memory
|
155 |
-
del video
|
156 |
-
del video_geo
|
157 |
-
torch.cuda.empty_cache()
|
158 |
-
|
159 |
-
# Generate and save full-quality GLB
|
160 |
-
progress(0.8, desc="Generating full-quality GLB...")
|
161 |
-
glb = postprocessing_utils.to_glb(
|
162 |
-
outputs['gaussian'][0],
|
163 |
-
outputs['mesh'][0],
|
164 |
-
simplify=0.0,
|
165 |
-
texture_size=2048,
|
166 |
-
verbose=False
|
167 |
-
)
|
168 |
-
glb_path = os.path.join(user_dir, f"{trial_id}_full.glb")
|
169 |
-
progress(0.9, desc="Saving GLB file...")
|
170 |
-
glb.export(glb_path)
|
171 |
-
|
172 |
-
# Pack state for reduced version
|
173 |
-
progress(0.95, desc="Finalizing...")
|
174 |
-
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
175 |
-
|
176 |
-
# Final cleanup
|
177 |
-
torch.cuda.empty_cache()
|
178 |
-
progress(1.0, desc="Complete!")
|
179 |
-
|
180 |
-
return state, video_path, glb_path, glb_path
|
181 |
-
|
182 |
-
except Exception as e:
|
183 |
-
# Clean up on error
|
184 |
-
torch.cuda.empty_cache()
|
185 |
-
raise gr.Error(f"Processing failed: {str(e)}")
|
186 |
|
187 |
def extract_reduced_glb(
|
188 |
state: dict,
|
189 |
mesh_simplify: float,
|
190 |
texture_size: int,
|
191 |
req: gr.Request,
|
192 |
-
progress: gr.Progress = gr.Progress()
|
193 |
) -> Tuple[str, str]:
|
194 |
-
"""
|
195 |
-
Extract a reduced-quality GLB file with progress tracking.
|
196 |
-
"""
|
197 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
)
|
210 |
-
|
211 |
-
progress(0.8, desc="Saving reduced GLB...")
|
212 |
-
glb_path = os.path.join(user_dir, f"{trial_id}_reduced.glb")
|
213 |
-
glb.export(glb_path)
|
214 |
-
|
215 |
-
progress(0.9, desc="Cleaning up...")
|
216 |
-
torch.cuda.empty_cache()
|
217 |
-
|
218 |
-
progress(1.0, desc="Complete!")
|
219 |
-
return glb_path, glb_path
|
220 |
-
|
221 |
-
except Exception as e:
|
222 |
-
torch.cuda.empty_cache()
|
223 |
-
raise gr.Error(f"GLB reduction failed: {str(e)}")
|
224 |
|
225 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
226 |
gr.Markdown("""
|
@@ -312,20 +233,12 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
312 |
)
|
313 |
|
314 |
if __name__ == "__main__":
|
315 |
-
# Set some CUDA memory management options
|
316 |
-
torch.cuda.empty_cache()
|
317 |
-
torch.backends.cudnn.benchmark = True
|
318 |
-
|
319 |
# Initialize pipeline
|
320 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
321 |
pipeline.cuda()
|
322 |
|
323 |
try:
|
324 |
-
|
325 |
-
test_img = np.zeros((256, 256, 3), dtype=np.uint8) # Smaller test image
|
326 |
-
pipeline.preprocess_image(Image.fromarray(test_img))
|
327 |
-
del test_img
|
328 |
-
torch.cuda.empty_cache()
|
329 |
except:
|
330 |
pass
|
331 |
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import os
|
3 |
import shutil
|
4 |
os.environ['SPCONV_ALGO'] = 'native'
|
|
|
12 |
from trellis.pipelines import TrellisImageTo3DPipeline
|
13 |
from trellis.representations import Gaussian, MeshExtractResult
|
14 |
from trellis.utils import render_utils, postprocessing_utils
|
15 |
+
from gradio_litmodel3d import LitModel3D
|
16 |
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
74 |
return gs, mesh, state['trial_id']
|
75 |
|
76 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
|
77 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
78 |
|
79 |
def image_to_3d(
|
|
|
84 |
slat_guidance_strength: float,
|
85 |
slat_sampling_steps: int,
|
86 |
req: gr.Request,
|
|
|
87 |
) -> Tuple[dict, str, str, str]:
|
|
|
|
|
|
|
88 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
89 |
+
outputs = pipeline.run(
|
90 |
+
image,
|
91 |
+
seed=seed,
|
92 |
+
formats=["gaussian", "mesh"],
|
93 |
+
preprocess_image=False,
|
94 |
+
sparse_structure_sampler_params={
|
95 |
+
"steps": ss_sampling_steps,
|
96 |
+
"cfg_strength": ss_guidance_strength,
|
97 |
+
},
|
98 |
+
slat_sampler_params={
|
99 |
+
"steps": slat_sampling_steps,
|
100 |
+
"cfg_strength": slat_guidance_strength,
|
101 |
+
},
|
102 |
+
)
|
103 |
|
104 |
+
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
105 |
+
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
106 |
+
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
107 |
|
108 |
+
trial_id = str(uuid.uuid4())
|
109 |
+
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
110 |
+
imageio.mimsave(video_path, video, fps=15)
|
111 |
+
|
112 |
+
# Save full-quality GLB
|
113 |
+
glb = postprocessing_utils.to_glb(
|
114 |
+
outputs['gaussian'][0],
|
115 |
+
outputs['mesh'][0],
|
116 |
+
simplify=0.0,
|
117 |
+
texture_size=2048,
|
118 |
+
verbose=False
|
119 |
+
)
|
120 |
+
glb_path = os.path.join(user_dir, f"{trial_id}_full.glb")
|
121 |
+
glb.export(glb_path)
|
122 |
+
|
123 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
124 |
+
return state, video_path, glb_path, glb_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
def extract_reduced_glb(
|
127 |
state: dict,
|
128 |
mesh_simplify: float,
|
129 |
texture_size: int,
|
130 |
req: gr.Request,
|
|
|
131 |
) -> Tuple[str, str]:
|
|
|
|
|
|
|
132 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
133 |
+
gs, mesh, trial_id = unpack_state(state)
|
134 |
|
135 |
+
glb = postprocessing_utils.to_glb(
|
136 |
+
gs, mesh,
|
137 |
+
simplify=mesh_simplify,
|
138 |
+
texture_size=texture_size,
|
139 |
+
verbose=False
|
140 |
+
)
|
141 |
+
glb_path = os.path.join(user_dir, f"{trial_id}_reduced.glb")
|
142 |
+
glb.export(glb_path)
|
143 |
+
|
144 |
+
return glb_path, glb_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
147 |
gr.Markdown("""
|
|
|
233 |
)
|
234 |
|
235 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
236 |
# Initialize pipeline
|
237 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
238 |
pipeline.cuda()
|
239 |
|
240 |
try:
|
241 |
+
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
|
|
|
|
|
|
|
|
242 |
except:
|
243 |
pass
|
244 |
|