Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,93 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def image_to_3d(
|
4 |
image: Image.Image,
|
@@ -27,7 +116,6 @@ def image_to_3d(
|
|
27 |
"cfg_strength": slat_guidance_strength,
|
28 |
},
|
29 |
)
|
30 |
-
|
31 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
32 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
33 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
@@ -35,7 +123,7 @@ def image_to_3d(
|
|
35 |
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
36 |
imageio.mimsave(video_path, video, fps=15)
|
37 |
|
38 |
-
#
|
39 |
glb = postprocessing_utils.to_glb(
|
40 |
outputs['gaussian'][0],
|
41 |
outputs['mesh'][0],
|
@@ -51,7 +139,94 @@ def image_to_3d(
|
|
51 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
52 |
return state, video_path, full_glb_path
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
generate_btn.click(
|
57 |
get_seed,
|
@@ -66,4 +241,20 @@ def image_to_3d(
|
|
66 |
outputs=[download_full, extract_glb_btn, download_reduced],
|
67 |
)
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
os.environ['SPCONV_ALGO'] = 'native'
|
5 |
+
from typing import *
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import imageio
|
9 |
+
import uuid
|
10 |
+
from easydict import EasyDict as edict
|
11 |
+
from PIL import Image
|
12 |
+
from trellis.pipelines import TrellisImageTo3DPipeline
|
13 |
+
from trellis.representations import Gaussian, MeshExtractResult
|
14 |
+
from trellis.utils import render_utils, postprocessing_utils
|
15 |
+
from gradio_litmodel3d import LitModel3D
|
16 |
+
|
17 |
+
|
18 |
+
MAX_SEED = np.iinfo(np.int32).max
|
19 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
20 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
21 |
+
|
22 |
+
|
23 |
+
def start_session(req: gr.Request):
|
24 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
25 |
+
print(f'Creating user directory: {user_dir}')
|
26 |
+
os.makedirs(user_dir, exist_ok=True)
|
27 |
+
|
28 |
+
def end_session(req: gr.Request):
|
29 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
30 |
+
print(f'Removing user directory: {user_dir}')
|
31 |
+
shutil.rmtree(user_dir)
|
32 |
+
|
33 |
+
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
34 |
+
"""
|
35 |
+
Preprocess the input image.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
image (Image.Image): The input image.
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
str: uuid of the trial.
|
42 |
+
Image.Image: The preprocessed image.
|
43 |
+
"""
|
44 |
+
processed_image = pipeline.preprocess_image(image)
|
45 |
+
return processed_image
|
46 |
+
|
47 |
+
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
48 |
+
return {
|
49 |
+
'gaussian': {
|
50 |
+
**gs.init_params,
|
51 |
+
'_xyz': gs._xyz.cpu().numpy(),
|
52 |
+
'_features_dc': gs._features_dc.cpu().numpy(),
|
53 |
+
'_scaling': gs._scaling.cpu().numpy(),
|
54 |
+
'_rotation': gs._rotation.cpu().numpy(),
|
55 |
+
'_opacity': gs._opacity.cpu().numpy(),
|
56 |
+
},
|
57 |
+
'mesh': {
|
58 |
+
'vertices': mesh.vertices.cpu().numpy(),
|
59 |
+
'faces': mesh.faces.cpu().numpy(),
|
60 |
+
},
|
61 |
+
'trial_id': trial_id,
|
62 |
+
}
|
63 |
+
|
64 |
+
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
65 |
+
gs = Gaussian(
|
66 |
+
aabb=state['gaussian']['aabb'],
|
67 |
+
sh_degree=state['gaussian']['sh_degree'],
|
68 |
+
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
69 |
+
scaling_bias=state['gaussian']['scaling_bias'],
|
70 |
+
opacity_bias=state['gaussian']['opacity_bias'],
|
71 |
+
scaling_activation=state['gaussian']['scaling_activation'],
|
72 |
+
)
|
73 |
+
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
74 |
+
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
75 |
+
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
76 |
+
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
77 |
+
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
78 |
+
|
79 |
+
mesh = edict(
|
80 |
+
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
81 |
+
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
82 |
+
)
|
83 |
+
|
84 |
+
return gs, mesh, state['trial_id']
|
85 |
+
|
86 |
+
def get_seed(randomize_seed: bool, seed: int) -> int:
|
87 |
+
"""
|
88 |
+
Get the random seed.
|
89 |
+
"""
|
90 |
+
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
91 |
|
92 |
def image_to_3d(
|
93 |
image: Image.Image,
|
|
|
116 |
"cfg_strength": slat_guidance_strength,
|
117 |
},
|
118 |
)
|
|
|
119 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
120 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
121 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
|
|
123 |
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
124 |
imageio.mimsave(video_path, video, fps=15)
|
125 |
|
126 |
+
# Save full quality GLB
|
127 |
glb = postprocessing_utils.to_glb(
|
128 |
outputs['gaussian'][0],
|
129 |
outputs['mesh'][0],
|
|
|
139 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
140 |
return state, video_path, full_glb_path
|
141 |
|
142 |
+
def extract_glb(
|
143 |
+
state: dict,
|
144 |
+
mesh_simplify: float,
|
145 |
+
texture_size: int,
|
146 |
+
req: gr.Request,
|
147 |
+
) -> Tuple[str, str]:
|
148 |
+
"""
|
149 |
+
Extract a GLB file from the 3D model.
|
150 |
+
"""
|
151 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
152 |
+
gs, mesh, trial_id = unpack_state(state)
|
153 |
+
glb = postprocessing_utils.to_glb(
|
154 |
+
gs, mesh,
|
155 |
+
simplify=mesh_simplify,
|
156 |
+
fill_holes=True,
|
157 |
+
fill_holes_max_size=0.04,
|
158 |
+
texture_size=texture_size,
|
159 |
+
verbose=False
|
160 |
+
)
|
161 |
+
glb_path = os.path.join(user_dir, f"{trial_id}_reduced.glb")
|
162 |
+
glb.export(glb_path)
|
163 |
+
return glb_path, glb_path
|
164 |
+
|
165 |
+
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
166 |
+
gr.Markdown("""
|
167 |
+
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
168 |
+
* Upload an image and click "Generate" to create a 3D asset
|
169 |
+
* After generation:
|
170 |
+
* Download the full quality GLB immediately
|
171 |
+
* Or create a reduced size version with the extraction settings below
|
172 |
+
""")
|
173 |
+
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
177 |
+
|
178 |
+
with gr.Accordion(label="Generation Settings", open=False):
|
179 |
+
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
180 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
181 |
+
gr.Markdown("Stage 1: Sparse Structure Generation")
|
182 |
+
with gr.Row():
|
183 |
+
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
184 |
+
ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
|
185 |
+
gr.Markdown("Stage 2: Structured Latent Generation")
|
186 |
+
with gr.Row():
|
187 |
+
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
188 |
+
slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
|
189 |
+
|
190 |
+
generate_btn = gr.Button("Generate")
|
191 |
+
|
192 |
+
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
193 |
+
mesh_simplify = gr.Slider(0.0, 0.98, label="Simplify", value=0.95, step=0.01)
|
194 |
+
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
195 |
+
|
196 |
+
extract_glb_btn = gr.Button("Extract Reduced GLB", interactive=False)
|
197 |
+
|
198 |
+
with gr.Column():
|
199 |
+
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
200 |
+
model_output = LitModel3D(label="3D Model Preview", exposure=20.0, height=300)
|
201 |
+
with gr.Row():
|
202 |
+
download_full = gr.DownloadButton(label="Download Full-Quality GLB", interactive=False)
|
203 |
+
download_reduced = gr.DownloadButton(label="Download Reduced GLB", interactive=False)
|
204 |
+
|
205 |
+
output_buf = gr.State()
|
206 |
+
|
207 |
+
# Example images at the bottom of the page
|
208 |
+
with gr.Row():
|
209 |
+
examples = gr.Examples(
|
210 |
+
examples=[
|
211 |
+
f'assets/example_image/{image}'
|
212 |
+
for image in os.listdir("assets/example_image")
|
213 |
+
],
|
214 |
+
inputs=[image_prompt],
|
215 |
+
fn=preprocess_image,
|
216 |
+
outputs=[image_prompt],
|
217 |
+
run_on_click=True,
|
218 |
+
examples_per_page=64,
|
219 |
+
)
|
220 |
+
|
221 |
+
# Event handlers
|
222 |
+
demo.load(start_session)
|
223 |
+
demo.unload(end_session)
|
224 |
+
|
225 |
+
image_prompt.upload(
|
226 |
+
preprocess_image,
|
227 |
+
inputs=[image_prompt],
|
228 |
+
outputs=[image_prompt],
|
229 |
+
)
|
230 |
|
231 |
generate_btn.click(
|
232 |
get_seed,
|
|
|
241 |
outputs=[download_full, extract_glb_btn, download_reduced],
|
242 |
)
|
243 |
|
244 |
+
extract_glb_btn.click(
|
245 |
+
extract_glb,
|
246 |
+
inputs=[output_buf, mesh_simplify, texture_size],
|
247 |
+
outputs=[model_output, download_reduced],
|
248 |
+
).then(
|
249 |
+
lambda: gr.Button(interactive=True),
|
250 |
+
outputs=[download_reduced],
|
251 |
+
)
|
252 |
+
|
253 |
+
if __name__ == "__main__":
|
254 |
+
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
255 |
+
pipeline.cuda()
|
256 |
+
try:
|
257 |
+
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
258 |
+
except:
|
259 |
+
pass
|
260 |
+
demo.launch()
|