cronos3k commited on
Commit
b1b52ab
·
verified ·
1 Parent(s): 16dfcc8

Update app.py

Browse files

optimisation and timeout issues fixed?

Files changed (1) hide show
  1. app.py +140 -143
app.py CHANGED
@@ -1,44 +1,4 @@
1
- import gradio as gr
2
- import spaces
3
- from gradio_litmodel3d import LitModel3D
4
-
5
- import os
6
- import shutil
7
- os.environ['SPCONV_ALGO'] = 'native'
8
- from typing import *
9
- import torch
10
- import numpy as np
11
- import imageio
12
- import uuid
13
- from easydict import EasyDict as edict
14
- from PIL import Image
15
- from trellis.pipelines import TrellisImageTo3DPipeline
16
- from trellis.representations import Gaussian, MeshExtractResult
17
- from trellis.utils import render_utils, postprocessing_utils
18
-
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
22
- os.makedirs(TMP_DIR, exist_ok=True)
23
-
24
-
25
- def start_session(req: gr.Request):
26
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
27
- print(f'Creating user directory: {user_dir}')
28
- os.makedirs(user_dir, exist_ok=True)
29
-
30
- def end_session(req: gr.Request):
31
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
32
- print(f'Removing user directory: {user_dir}')
33
- shutil.rmtree(user_dir)
34
-
35
- def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
36
- processed_image = pipeline.preprocess_image(image)
37
- return processed_image
38
-
39
- def get_seed(randomize_seed: bool, seed: int) -> int:
40
- """Get the random seed."""
41
- return np.random.randint(0, MAX_SEED) if randomize_seed else seed
42
 
43
  @spaces.GPU
44
  def image_to_3d(
@@ -49,125 +9,162 @@ def image_to_3d(
49
  slat_guidance_strength: float,
50
  slat_sampling_steps: int,
51
  req: gr.Request,
52
- ) -> Tuple[str, str, str]:
 
53
  """
54
- Convert an image to a 3D model and save both video preview and full-quality GLB.
55
-
56
- Returns:
57
- Tuple[str, str, str]: (video_path, glb_path, download_path)
58
  """
59
  user_dir = os.path.join(TMP_DIR, str(req.session_hash))
60
- outputs = pipeline.run(
61
- image,
62
- seed=seed,
63
- formats=["gaussian", "mesh"],
64
- preprocess_image=False,
65
- sparse_structure_sampler_params={
66
- "steps": ss_sampling_steps,
67
- "cfg_strength": ss_guidance_strength,
68
- },
69
- slat_sampler_params={
70
- "steps": slat_sampling_steps,
71
- "cfg_strength": slat_guidance_strength,
72
- },
73
- )
74
-
75
- # Generate and save video preview
76
- video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
77
- video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
78
- video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
79
- trial_id = str(uuid.uuid4())
80
- video_path = os.path.join(user_dir, f"{trial_id}.mp4")
81
- imageio.mimsave(video_path, video, fps=15)
82
-
83
- # Save full-quality GLB directly from the generated mesh
84
- glb = postprocessing_utils.to_glb(
85
- outputs['gaussian'][0],
86
- outputs['mesh'][0],
87
- simplify=0.0, # No simplification
88
- texture_size=2048, # Maximum texture resolution
89
- verbose=False
90
- )
91
- glb_path = os.path.join(user_dir, f"{trial_id}_full.glb")
92
- glb.export(glb_path)
93
 
 
94
  torch.cuda.empty_cache()
95
- return video_path, glb_path, glb_path
96
-
97
- with gr.Blocks(delete_cache=(600, 600)) as demo:
98
- gr.Markdown("""
99
- ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
100
- * Upload an image and click "Generate" to create a high-quality 3D model
101
- * Once generation is complete, you can download the full-quality GLB file
102
- * The model will be in maximum quality with no reduction applied
103
- """)
104
 
105
- with gr.Row():
106
- with gr.Column():
107
- image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
- with gr.Accordion(label="Generation Settings", open=False):
110
- seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
111
- randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
112
- gr.Markdown("Stage 1: Sparse Structure Generation")
113
- with gr.Row():
114
- ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
115
- ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
116
- gr.Markdown("Stage 2: Structured Latent Generation")
117
- with gr.Row():
118
- slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
119
- slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
120
-
121
- generate_btn = gr.Button("Generate")
122
-
123
- with gr.Column():
124
- video_output = gr.Video(label="Generated 3D Asset Preview", autoplay=True, loop=True, height=300)
125
- model_output = LitModel3D(label="3D Model Preview", exposure=20.0, height=300)
126
- download_glb = gr.DownloadButton(label="Download Full-Quality GLB", interactive=False)
127
 
128
- # Example images
129
- with gr.Row():
130
- examples = gr.Examples(
131
- examples=[
132
- f'assets/example_image/{image}'
133
- for image in os.listdir("assets/example_image")
134
- ],
135
- inputs=[image_prompt],
136
- fn=preprocess_image,
137
- outputs=[image_prompt],
138
- run_on_click=True,
139
- examples_per_page=64,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
142
- # Event handlers
143
- demo.load(start_session)
144
- demo.unload(end_session)
 
 
 
 
 
 
 
 
 
145
 
146
- image_prompt.upload(
147
- preprocess_image,
148
- inputs=[image_prompt],
149
- outputs=[image_prompt],
150
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
- generate_btn.click(
153
- get_seed,
154
- inputs=[randomize_seed, seed],
155
- outputs=[seed],
156
- ).then(
157
- image_to_3d,
158
- inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
159
- outputs=[video_output, model_output, download_glb],
160
- ).then(
161
- lambda: gr.Button(interactive=True),
162
- outputs=[download_glb],
163
- )
164
 
165
- # Launch the Gradio app
166
  if __name__ == "__main__":
 
 
 
 
 
167
  pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
168
  pipeline.cuda()
 
169
  try:
170
- pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
 
 
 
 
171
  except:
172
  pass
 
173
  demo.launch()
 
1
+ # ... (previous imports remain the same) ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  @spaces.GPU
4
  def image_to_3d(
 
9
  slat_guidance_strength: float,
10
  slat_sampling_steps: int,
11
  req: gr.Request,
12
+ progress: gr.Progress = gr.Progress()
13
+ ) -> Tuple[dict, str, str, str]:
14
  """
15
+ Convert an image to a 3D model with improved memory management and progress tracking.
 
 
 
16
  """
17
  user_dir = os.path.join(TMP_DIR, str(req.session_hash))
18
+ progress(0, desc="Initializing...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ # Clear CUDA cache before starting
21
  torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
 
22
 
23
+ try:
24
+ # Generate 3D model with progress updates
25
+ progress(0.1, desc="Running 3D generation pipeline...")
26
+ outputs = pipeline.run(
27
+ image,
28
+ seed=seed,
29
+ formats=["gaussian", "mesh"],
30
+ preprocess_image=False,
31
+ sparse_structure_sampler_params={
32
+ "steps": ss_sampling_steps,
33
+ "cfg_strength": ss_guidance_strength,
34
+ },
35
+ slat_sampler_params={
36
+ "steps": slat_sampling_steps,
37
+ "cfg_strength": slat_guidance_strength,
38
+ },
39
+ )
40
+
41
+ progress(0.4, desc="Generating video preview...")
42
+ # Generate video frames in batches to manage memory
43
+ batch_size = 30 # Process 30 frames at a time
44
+ num_frames = 120
45
+ video = []
46
+ video_geo = []
47
+
48
+ for i in range(0, num_frames, batch_size):
49
+ end_idx = min(i + batch_size, num_frames)
50
+ batch_frames = render_utils.render_video(
51
+ outputs['gaussian'][0],
52
+ num_frames=end_idx - i,
53
+ start_frame=i
54
+ )['color']
55
+ batch_geo = render_utils.render_video(
56
+ outputs['mesh'][0],
57
+ num_frames=end_idx - i,
58
+ start_frame=i
59
+ )['normal']
60
 
61
+ video.extend(batch_frames)
62
+ video_geo.extend(batch_geo)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ # Clear cache after each batch
65
+ torch.cuda.empty_cache()
66
+ progress(0.4 + (0.3 * i / num_frames), desc=f"Rendering frames {i} to {end_idx}...")
67
+
68
+ # Combine video frames
69
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
70
+
71
+ # Generate unique ID and save video
72
+ trial_id = str(uuid.uuid4())
73
+ video_path = os.path.join(user_dir, f"{trial_id}.mp4")
74
+ progress(0.7, desc="Saving video...")
75
+ imageio.mimsave(video_path, video, fps=15)
76
+
77
+ # Clear video data from memory
78
+ del video
79
+ del video_geo
80
+ torch.cuda.empty_cache()
81
+
82
+ # Generate and save full-quality GLB
83
+ progress(0.8, desc="Generating full-quality GLB...")
84
+ glb = postprocessing_utils.to_glb(
85
+ outputs['gaussian'][0],
86
+ outputs['mesh'][0],
87
+ simplify=0.0,
88
+ texture_size=2048,
89
+ verbose=False
90
  )
91
+ glb_path = os.path.join(user_dir, f"{trial_id}_full.glb")
92
+ progress(0.9, desc="Saving GLB file...")
93
+ glb.export(glb_path)
94
+
95
+ # Pack state for reduced version
96
+ progress(0.95, desc="Finalizing...")
97
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
98
+
99
+ # Final cleanup
100
+ torch.cuda.empty_cache()
101
+ progress(1.0, desc="Complete!")
102
+
103
+ return state, video_path, glb_path, glb_path
104
+
105
+ except Exception as e:
106
+ # Clean up on error
107
+ torch.cuda.empty_cache()
108
+ raise gr.Error(f"Processing failed: {str(e)}")
109
 
110
+ @spaces.GPU
111
+ def extract_reduced_glb(
112
+ state: dict,
113
+ mesh_simplify: float,
114
+ texture_size: int,
115
+ req: gr.Request,
116
+ progress: gr.Progress = gr.Progress()
117
+ ) -> Tuple[str, str]:
118
+ """
119
+ Extract a reduced-quality GLB file with progress tracking.
120
+ """
121
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
122
 
123
+ try:
124
+ progress(0.1, desc="Unpacking model state...")
125
+ gs, mesh, trial_id = unpack_state(state)
126
+
127
+ progress(0.3, desc="Generating reduced GLB...")
128
+ glb = postprocessing_utils.to_glb(
129
+ gs, mesh,
130
+ simplify=mesh_simplify,
131
+ texture_size=texture_size,
132
+ verbose=False
133
+ )
134
+
135
+ progress(0.8, desc="Saving reduced GLB...")
136
+ glb_path = os.path.join(user_dir, f"{trial_id}_reduced.glb")
137
+ glb.export(glb_path)
138
+
139
+ progress(0.9, desc="Cleaning up...")
140
+ torch.cuda.empty_cache()
141
+
142
+ progress(1.0, desc="Complete!")
143
+ return glb_path, glb_path
144
+
145
+ except Exception as e:
146
+ torch.cuda.empty_cache()
147
+ raise gr.Error(f"GLB reduction failed: {str(e)}")
148
 
149
+ # ... (rest of the UI code remains the same) ...
 
 
 
 
 
 
 
 
 
 
 
150
 
151
+ # Add some memory optimization settings at startup
152
  if __name__ == "__main__":
153
+ # Set some CUDA memory management options
154
+ torch.cuda.empty_cache()
155
+ torch.backends.cudnn.benchmark = True
156
+
157
+ # Initialize pipeline
158
  pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
159
  pipeline.cuda()
160
+
161
  try:
162
+ # Preload rembg with minimal memory usage
163
+ test_img = np.zeros((256, 256, 3), dtype=np.uint8) # Smaller test image
164
+ pipeline.preprocess_image(Image.fromarray(test_img))
165
+ del test_img
166
+ torch.cuda.empty_cache()
167
  except:
168
  pass
169
+
170
  demo.launch()