Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesoptimisation and timeout issues fixed?
app.py
CHANGED
@@ -1,44 +1,4 @@
|
|
1 |
-
|
2 |
-
import spaces
|
3 |
-
from gradio_litmodel3d import LitModel3D
|
4 |
-
|
5 |
-
import os
|
6 |
-
import shutil
|
7 |
-
os.environ['SPCONV_ALGO'] = 'native'
|
8 |
-
from typing import *
|
9 |
-
import torch
|
10 |
-
import numpy as np
|
11 |
-
import imageio
|
12 |
-
import uuid
|
13 |
-
from easydict import EasyDict as edict
|
14 |
-
from PIL import Image
|
15 |
-
from trellis.pipelines import TrellisImageTo3DPipeline
|
16 |
-
from trellis.representations import Gaussian, MeshExtractResult
|
17 |
-
from trellis.utils import render_utils, postprocessing_utils
|
18 |
-
|
19 |
-
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
22 |
-
os.makedirs(TMP_DIR, exist_ok=True)
|
23 |
-
|
24 |
-
|
25 |
-
def start_session(req: gr.Request):
|
26 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
27 |
-
print(f'Creating user directory: {user_dir}')
|
28 |
-
os.makedirs(user_dir, exist_ok=True)
|
29 |
-
|
30 |
-
def end_session(req: gr.Request):
|
31 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
32 |
-
print(f'Removing user directory: {user_dir}')
|
33 |
-
shutil.rmtree(user_dir)
|
34 |
-
|
35 |
-
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
36 |
-
processed_image = pipeline.preprocess_image(image)
|
37 |
-
return processed_image
|
38 |
-
|
39 |
-
def get_seed(randomize_seed: bool, seed: int) -> int:
|
40 |
-
"""Get the random seed."""
|
41 |
-
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
42 |
|
43 |
@spaces.GPU
|
44 |
def image_to_3d(
|
@@ -49,125 +9,162 @@ def image_to_3d(
|
|
49 |
slat_guidance_strength: float,
|
50 |
slat_sampling_steps: int,
|
51 |
req: gr.Request,
|
52 |
-
|
|
|
53 |
"""
|
54 |
-
Convert an image to a 3D model
|
55 |
-
|
56 |
-
Returns:
|
57 |
-
Tuple[str, str, str]: (video_path, glb_path, download_path)
|
58 |
"""
|
59 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
60 |
-
|
61 |
-
image,
|
62 |
-
seed=seed,
|
63 |
-
formats=["gaussian", "mesh"],
|
64 |
-
preprocess_image=False,
|
65 |
-
sparse_structure_sampler_params={
|
66 |
-
"steps": ss_sampling_steps,
|
67 |
-
"cfg_strength": ss_guidance_strength,
|
68 |
-
},
|
69 |
-
slat_sampler_params={
|
70 |
-
"steps": slat_sampling_steps,
|
71 |
-
"cfg_strength": slat_guidance_strength,
|
72 |
-
},
|
73 |
-
)
|
74 |
-
|
75 |
-
# Generate and save video preview
|
76 |
-
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
77 |
-
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
78 |
-
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
79 |
-
trial_id = str(uuid.uuid4())
|
80 |
-
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
81 |
-
imageio.mimsave(video_path, video, fps=15)
|
82 |
-
|
83 |
-
# Save full-quality GLB directly from the generated mesh
|
84 |
-
glb = postprocessing_utils.to_glb(
|
85 |
-
outputs['gaussian'][0],
|
86 |
-
outputs['mesh'][0],
|
87 |
-
simplify=0.0, # No simplification
|
88 |
-
texture_size=2048, # Maximum texture resolution
|
89 |
-
verbose=False
|
90 |
-
)
|
91 |
-
glb_path = os.path.join(user_dir, f"{trial_id}_full.glb")
|
92 |
-
glb.export(glb_path)
|
93 |
|
|
|
94 |
torch.cuda.empty_cache()
|
95 |
-
return video_path, glb_path, glb_path
|
96 |
-
|
97 |
-
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
98 |
-
gr.Markdown("""
|
99 |
-
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
100 |
-
* Upload an image and click "Generate" to create a high-quality 3D model
|
101 |
-
* Once generation is complete, you can download the full-quality GLB file
|
102 |
-
* The model will be in maximum quality with no reduction applied
|
103 |
-
""")
|
104 |
|
105 |
-
|
106 |
-
with
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
112 |
-
gr.Markdown("Stage 1: Sparse Structure Generation")
|
113 |
-
with gr.Row():
|
114 |
-
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
115 |
-
ss_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
|
116 |
-
gr.Markdown("Stage 2: Structured Latent Generation")
|
117 |
-
with gr.Row():
|
118 |
-
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
119 |
-
slat_sampling_steps = gr.Slider(1, 500, label="Sampling Steps", value=12, step=1)
|
120 |
-
|
121 |
-
generate_btn = gr.Button("Generate")
|
122 |
-
|
123 |
-
with gr.Column():
|
124 |
-
video_output = gr.Video(label="Generated 3D Asset Preview", autoplay=True, loop=True, height=300)
|
125 |
-
model_output = LitModel3D(label="3D Model Preview", exposure=20.0, height=300)
|
126 |
-
download_glb = gr.DownloadButton(label="Download Full-Quality GLB", interactive=False)
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
-
|
153 |
-
get_seed,
|
154 |
-
inputs=[randomize_seed, seed],
|
155 |
-
outputs=[seed],
|
156 |
-
).then(
|
157 |
-
image_to_3d,
|
158 |
-
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
159 |
-
outputs=[video_output, model_output, download_glb],
|
160 |
-
).then(
|
161 |
-
lambda: gr.Button(interactive=True),
|
162 |
-
outputs=[download_glb],
|
163 |
-
)
|
164 |
|
165 |
-
#
|
166 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
167 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
168 |
pipeline.cuda()
|
|
|
169 |
try:
|
170 |
-
|
|
|
|
|
|
|
|
|
171 |
except:
|
172 |
pass
|
|
|
173 |
demo.launch()
|
|
|
1 |
+
# ... (previous imports remain the same) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
@spaces.GPU
|
4 |
def image_to_3d(
|
|
|
9 |
slat_guidance_strength: float,
|
10 |
slat_sampling_steps: int,
|
11 |
req: gr.Request,
|
12 |
+
progress: gr.Progress = gr.Progress()
|
13 |
+
) -> Tuple[dict, str, str, str]:
|
14 |
"""
|
15 |
+
Convert an image to a 3D model with improved memory management and progress tracking.
|
|
|
|
|
|
|
16 |
"""
|
17 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
18 |
+
progress(0, desc="Initializing...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Clear CUDA cache before starting
|
21 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
try:
|
24 |
+
# Generate 3D model with progress updates
|
25 |
+
progress(0.1, desc="Running 3D generation pipeline...")
|
26 |
+
outputs = pipeline.run(
|
27 |
+
image,
|
28 |
+
seed=seed,
|
29 |
+
formats=["gaussian", "mesh"],
|
30 |
+
preprocess_image=False,
|
31 |
+
sparse_structure_sampler_params={
|
32 |
+
"steps": ss_sampling_steps,
|
33 |
+
"cfg_strength": ss_guidance_strength,
|
34 |
+
},
|
35 |
+
slat_sampler_params={
|
36 |
+
"steps": slat_sampling_steps,
|
37 |
+
"cfg_strength": slat_guidance_strength,
|
38 |
+
},
|
39 |
+
)
|
40 |
+
|
41 |
+
progress(0.4, desc="Generating video preview...")
|
42 |
+
# Generate video frames in batches to manage memory
|
43 |
+
batch_size = 30 # Process 30 frames at a time
|
44 |
+
num_frames = 120
|
45 |
+
video = []
|
46 |
+
video_geo = []
|
47 |
+
|
48 |
+
for i in range(0, num_frames, batch_size):
|
49 |
+
end_idx = min(i + batch_size, num_frames)
|
50 |
+
batch_frames = render_utils.render_video(
|
51 |
+
outputs['gaussian'][0],
|
52 |
+
num_frames=end_idx - i,
|
53 |
+
start_frame=i
|
54 |
+
)['color']
|
55 |
+
batch_geo = render_utils.render_video(
|
56 |
+
outputs['mesh'][0],
|
57 |
+
num_frames=end_idx - i,
|
58 |
+
start_frame=i
|
59 |
+
)['normal']
|
60 |
|
61 |
+
video.extend(batch_frames)
|
62 |
+
video_geo.extend(batch_geo)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# Clear cache after each batch
|
65 |
+
torch.cuda.empty_cache()
|
66 |
+
progress(0.4 + (0.3 * i / num_frames), desc=f"Rendering frames {i} to {end_idx}...")
|
67 |
+
|
68 |
+
# Combine video frames
|
69 |
+
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
70 |
+
|
71 |
+
# Generate unique ID and save video
|
72 |
+
trial_id = str(uuid.uuid4())
|
73 |
+
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
74 |
+
progress(0.7, desc="Saving video...")
|
75 |
+
imageio.mimsave(video_path, video, fps=15)
|
76 |
+
|
77 |
+
# Clear video data from memory
|
78 |
+
del video
|
79 |
+
del video_geo
|
80 |
+
torch.cuda.empty_cache()
|
81 |
+
|
82 |
+
# Generate and save full-quality GLB
|
83 |
+
progress(0.8, desc="Generating full-quality GLB...")
|
84 |
+
glb = postprocessing_utils.to_glb(
|
85 |
+
outputs['gaussian'][0],
|
86 |
+
outputs['mesh'][0],
|
87 |
+
simplify=0.0,
|
88 |
+
texture_size=2048,
|
89 |
+
verbose=False
|
90 |
)
|
91 |
+
glb_path = os.path.join(user_dir, f"{trial_id}_full.glb")
|
92 |
+
progress(0.9, desc="Saving GLB file...")
|
93 |
+
glb.export(glb_path)
|
94 |
+
|
95 |
+
# Pack state for reduced version
|
96 |
+
progress(0.95, desc="Finalizing...")
|
97 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
98 |
+
|
99 |
+
# Final cleanup
|
100 |
+
torch.cuda.empty_cache()
|
101 |
+
progress(1.0, desc="Complete!")
|
102 |
+
|
103 |
+
return state, video_path, glb_path, glb_path
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
# Clean up on error
|
107 |
+
torch.cuda.empty_cache()
|
108 |
+
raise gr.Error(f"Processing failed: {str(e)}")
|
109 |
|
110 |
+
@spaces.GPU
|
111 |
+
def extract_reduced_glb(
|
112 |
+
state: dict,
|
113 |
+
mesh_simplify: float,
|
114 |
+
texture_size: int,
|
115 |
+
req: gr.Request,
|
116 |
+
progress: gr.Progress = gr.Progress()
|
117 |
+
) -> Tuple[str, str]:
|
118 |
+
"""
|
119 |
+
Extract a reduced-quality GLB file with progress tracking.
|
120 |
+
"""
|
121 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
122 |
|
123 |
+
try:
|
124 |
+
progress(0.1, desc="Unpacking model state...")
|
125 |
+
gs, mesh, trial_id = unpack_state(state)
|
126 |
+
|
127 |
+
progress(0.3, desc="Generating reduced GLB...")
|
128 |
+
glb = postprocessing_utils.to_glb(
|
129 |
+
gs, mesh,
|
130 |
+
simplify=mesh_simplify,
|
131 |
+
texture_size=texture_size,
|
132 |
+
verbose=False
|
133 |
+
)
|
134 |
+
|
135 |
+
progress(0.8, desc="Saving reduced GLB...")
|
136 |
+
glb_path = os.path.join(user_dir, f"{trial_id}_reduced.glb")
|
137 |
+
glb.export(glb_path)
|
138 |
+
|
139 |
+
progress(0.9, desc="Cleaning up...")
|
140 |
+
torch.cuda.empty_cache()
|
141 |
+
|
142 |
+
progress(1.0, desc="Complete!")
|
143 |
+
return glb_path, glb_path
|
144 |
+
|
145 |
+
except Exception as e:
|
146 |
+
torch.cuda.empty_cache()
|
147 |
+
raise gr.Error(f"GLB reduction failed: {str(e)}")
|
148 |
|
149 |
+
# ... (rest of the UI code remains the same) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
# Add some memory optimization settings at startup
|
152 |
if __name__ == "__main__":
|
153 |
+
# Set some CUDA memory management options
|
154 |
+
torch.cuda.empty_cache()
|
155 |
+
torch.backends.cudnn.benchmark = True
|
156 |
+
|
157 |
+
# Initialize pipeline
|
158 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
159 |
pipeline.cuda()
|
160 |
+
|
161 |
try:
|
162 |
+
# Preload rembg with minimal memory usage
|
163 |
+
test_img = np.zeros((256, 256, 3), dtype=np.uint8) # Smaller test image
|
164 |
+
pipeline.preprocess_image(Image.fromarray(test_img))
|
165 |
+
del test_img
|
166 |
+
torch.cuda.empty_cache()
|
167 |
except:
|
168 |
pass
|
169 |
+
|
170 |
demo.launch()
|