Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -100,11 +100,13 @@ def image_to_3d(
|
|
100 |
slat_guidance_strength: float,
|
101 |
slat_sampling_steps: int,
|
102 |
req: gr.Request,
|
103 |
-
) -> Tuple[dict, str
|
104 |
"""
|
105 |
-
Convert an image to a 3D model
|
106 |
"""
|
107 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
|
108 |
outputs = pipeline.run(
|
109 |
image,
|
110 |
seed=seed,
|
@@ -120,29 +122,82 @@ def image_to_3d(
|
|
120 |
},
|
121 |
)
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
127 |
trial_id = str(uuid.uuid4())
|
128 |
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
129 |
imageio.mimsave(video_path, video, fps=15)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
glb = postprocessing_utils.to_glb(
|
134 |
-
|
135 |
-
|
136 |
simplify=0.0, # No simplification
|
137 |
fill_holes=True,
|
138 |
fill_holes_max_size=0.04,
|
139 |
texture_size=2048, # Maximum texture resolution
|
140 |
-
verbose=
|
141 |
)
|
142 |
-
|
|
|
143 |
|
144 |
-
|
145 |
-
|
|
|
146 |
|
147 |
@spaces.GPU
|
148 |
def extract_glb(
|
@@ -152,7 +207,7 @@ def extract_glb(
|
|
152 |
req: gr.Request,
|
153 |
) -> Tuple[str, str]:
|
154 |
"""
|
155 |
-
Extract a
|
156 |
"""
|
157 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
158 |
gs, mesh, trial_id = unpack_state(state)
|
@@ -165,8 +220,9 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
165 |
gr.Markdown("""
|
166 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
167 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
168 |
-
*
|
169 |
-
|
|
|
170 |
""")
|
171 |
|
172 |
with gr.Row():
|
@@ -233,12 +289,21 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
233 |
).then(
|
234 |
image_to_3d,
|
235 |
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
236 |
-
outputs=[output_buf, video_output
|
237 |
).then(
|
238 |
lambda: [gr.Button(interactive=True), gr.Button(interactive=True), gr.Button(interactive=False)],
|
239 |
outputs=[download_full, extract_glb_btn, download_reduced],
|
240 |
)
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
extract_glb_btn.click(
|
243 |
extract_glb,
|
244 |
inputs=[output_buf, mesh_simplify, texture_size],
|
|
|
100 |
slat_guidance_strength: float,
|
101 |
slat_sampling_steps: int,
|
102 |
req: gr.Request,
|
103 |
+
) -> Tuple[dict, str]:
|
104 |
"""
|
105 |
+
Convert an image to a 3D model with memory management.
|
106 |
"""
|
107 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
108 |
+
|
109 |
+
# Generate base outputs
|
110 |
outputs = pipeline.run(
|
111 |
image,
|
112 |
seed=seed,
|
|
|
122 |
},
|
123 |
)
|
124 |
|
125 |
+
# Clear CUDA cache after model generation
|
126 |
+
torch.cuda.empty_cache()
|
127 |
+
|
128 |
+
# Generate video preview in smaller batches
|
129 |
+
video = []
|
130 |
+
video_geo = []
|
131 |
+
batch_size = 30 # Process 30 frames at a time
|
132 |
+
num_frames = 120
|
133 |
+
|
134 |
+
for i in range(0, num_frames, batch_size):
|
135 |
+
end_idx = min(i + batch_size, num_frames)
|
136 |
+
curr_frames = end_idx - i
|
137 |
+
|
138 |
+
# Generate color frames
|
139 |
+
batch_frames = render_utils.render_video(
|
140 |
+
outputs['gaussian'][0],
|
141 |
+
num_frames=curr_frames,
|
142 |
+
start_frame=i
|
143 |
+
)['color']
|
144 |
+
video.extend(batch_frames)
|
145 |
+
|
146 |
+
# Generate geometry frames
|
147 |
+
batch_geo = render_utils.render_video(
|
148 |
+
outputs['mesh'][0],
|
149 |
+
num_frames=curr_frames,
|
150 |
+
start_frame=i
|
151 |
+
)['normal']
|
152 |
+
video_geo.extend(batch_geo)
|
153 |
+
|
154 |
+
# Clear cache after each batch
|
155 |
+
torch.cuda.empty_cache()
|
156 |
+
|
157 |
+
# Combine and save video
|
158 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
159 |
trial_id = str(uuid.uuid4())
|
160 |
video_path = os.path.join(user_dir, f"{trial_id}.mp4")
|
161 |
imageio.mimsave(video_path, video, fps=15)
|
162 |
+
|
163 |
+
# Clear memory
|
164 |
+
del video
|
165 |
+
del video_geo
|
166 |
+
torch.cuda.empty_cache()
|
167 |
+
|
168 |
+
# Pack state and return
|
169 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
170 |
+
return state, video_path
|
171 |
|
172 |
+
@spaces.GPU
|
173 |
+
def export_full_quality_glb(
|
174 |
+
state: dict,
|
175 |
+
req: gr.Request,
|
176 |
+
) -> Tuple[str, str]:
|
177 |
+
"""
|
178 |
+
Export a full-quality GLB file with memory management.
|
179 |
+
"""
|
180 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
181 |
+
gs, mesh, trial_id = unpack_state(state)
|
182 |
+
|
183 |
+
# Clear cache before starting
|
184 |
+
torch.cuda.empty_cache()
|
185 |
+
|
186 |
glb = postprocessing_utils.to_glb(
|
187 |
+
gs,
|
188 |
+
mesh,
|
189 |
simplify=0.0, # No simplification
|
190 |
fill_holes=True,
|
191 |
fill_holes_max_size=0.04,
|
192 |
texture_size=2048, # Maximum texture resolution
|
193 |
+
verbose=True # Show progress
|
194 |
)
|
195 |
+
glb_path = os.path.join(user_dir, f"{trial_id}_full.glb")
|
196 |
+
glb.export(glb_path)
|
197 |
|
198 |
+
# Clear cache after finishing
|
199 |
+
torch.cuda.empty_cache()
|
200 |
+
return glb_path, glb_path
|
201 |
|
202 |
@spaces.GPU
|
203 |
def extract_glb(
|
|
|
207 |
req: gr.Request,
|
208 |
) -> Tuple[str, str]:
|
209 |
"""
|
210 |
+
Extract a GLB file from the 3D model.
|
211 |
"""
|
212 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
213 |
gs, mesh, trial_id = unpack_state(state)
|
|
|
220 |
gr.Markdown("""
|
221 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
222 |
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
|
223 |
+
* After generation:
|
224 |
+
* Click "Download Full-Quality GLB" for maximum quality
|
225 |
+
* Or use GLB Extraction Settings for a reduced size version
|
226 |
""")
|
227 |
|
228 |
with gr.Row():
|
|
|
289 |
).then(
|
290 |
image_to_3d,
|
291 |
inputs=[image_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
292 |
+
outputs=[output_buf, video_output],
|
293 |
).then(
|
294 |
lambda: [gr.Button(interactive=True), gr.Button(interactive=True), gr.Button(interactive=False)],
|
295 |
outputs=[download_full, extract_glb_btn, download_reduced],
|
296 |
)
|
297 |
|
298 |
+
download_full.click(
|
299 |
+
export_full_quality_glb,
|
300 |
+
inputs=[output_buf],
|
301 |
+
outputs=[model_output, download_full],
|
302 |
+
).then(
|
303 |
+
lambda: gr.Button(interactive=True),
|
304 |
+
outputs=[download_full],
|
305 |
+
)
|
306 |
+
|
307 |
extract_glb_btn.click(
|
308 |
extract_glb,
|
309 |
inputs=[output_buf, mesh_simplify, texture_size],
|