Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesmaking the high quality source mesh available for download
app.py
CHANGED
@@ -17,24 +17,27 @@ from trellis.representations import Gaussian, MeshExtractResult
|
|
17 |
from trellis.utils import render_utils, postprocessing_utils
|
18 |
|
19 |
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
22 |
os.makedirs(TMP_DIR, exist_ok=True)
|
23 |
|
24 |
|
|
|
25 |
def start_session(req: gr.Request):
|
26 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
27 |
print(f'Creating user directory: {user_dir}')
|
28 |
os.makedirs(user_dir, exist_ok=True)
|
29 |
-
|
30 |
-
|
31 |
def end_session(req: gr.Request):
|
32 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
33 |
print(f'Removing user directory: {user_dir}')
|
34 |
shutil.rmtree(user_dir)
|
35 |
|
36 |
|
37 |
-
|
|
|
38 |
"""
|
39 |
Preprocess the input image.
|
40 |
|
@@ -42,13 +45,13 @@ def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
|
42 |
image (Image.Image): The input image.
|
43 |
|
44 |
Returns:
|
45 |
-
str: uuid of the trial.
|
46 |
Image.Image: The preprocessed image.
|
47 |
"""
|
48 |
processed_image = pipeline.preprocess_image(image)
|
49 |
return processed_image
|
50 |
|
51 |
|
|
|
52 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
53 |
return {
|
54 |
'gaussian': {
|
@@ -65,8 +68,8 @@ def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
|
65 |
},
|
66 |
'trial_id': trial_id,
|
67 |
}
|
68 |
-
|
69 |
-
|
70 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
71 |
gs = Gaussian(
|
72 |
aabb=state['gaussian']['aabb'],
|
@@ -90,13 +93,22 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
90 |
return gs, mesh, state['trial_id']
|
91 |
|
92 |
|
|
|
93 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
94 |
"""
|
95 |
Get the random seed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
"""
|
97 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
98 |
|
99 |
|
|
|
100 |
@spaces.GPU
|
101 |
def image_to_3d(
|
102 |
image: Image.Image,
|
@@ -117,10 +129,10 @@ def image_to_3d(
|
|
117 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
118 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
119 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
|
|
120 |
|
121 |
Returns:
|
122 |
-
dict: The
|
123 |
-
str: The path to the video of the 3D model.
|
124 |
"""
|
125 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
126 |
outputs = pipeline.run(
|
@@ -148,6 +160,7 @@ def image_to_3d(
|
|
148 |
return state, video_path
|
149 |
|
150 |
|
|
|
151 |
@spaces.GPU
|
152 |
def extract_glb(
|
153 |
state: dict,
|
@@ -162,9 +175,10 @@ def extract_glb(
|
|
162 |
state (dict): The state of the generated 3D model.
|
163 |
mesh_simplify (float): The mesh simplification factor.
|
164 |
texture_size (int): The texture resolution.
|
|
|
165 |
|
166 |
Returns:
|
167 |
-
str: The path to the extracted GLB file.
|
168 |
"""
|
169 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
170 |
gs, mesh, trial_id = unpack_state(state)
|
@@ -175,45 +189,158 @@ def extract_glb(
|
|
175 |
return glb_path, glb_path
|
176 |
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
179 |
gr.Markdown("""
|
180 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
181 |
-
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise,
|
182 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
|
|
183 |
""")
|
184 |
-
|
185 |
with gr.Row():
|
186 |
with gr.Column():
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
|
|
189 |
with gr.Accordion(label="Generation Settings", open=False):
|
190 |
-
seed = gr.Slider(
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
with gr.Row():
|
194 |
-
ss_guidance_strength = gr.Slider(
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
with gr.Row():
|
198 |
-
slat_guidance_strength = gr.Slider(
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
generate_btn = gr.Button("Generate")
|
202 |
|
|
|
203 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
204 |
-
mesh_simplify = gr.Slider(
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
|
|
207 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
|
|
|
|
|
|
208 |
|
209 |
with gr.Column():
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
output_buf = gr.State()
|
|
|
|
|
215 |
|
216 |
-
# Example
|
217 |
with gr.Row():
|
218 |
examples = gr.Examples(
|
219 |
examples=[
|
@@ -227,51 +354,78 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
227 |
examples_per_page=64,
|
228 |
)
|
229 |
|
230 |
-
# Handlers
|
231 |
demo.load(start_session)
|
232 |
demo.unload(end_session)
|
233 |
|
|
|
234 |
image_prompt.upload(
|
235 |
preprocess_image,
|
236 |
inputs=[image_prompt],
|
237 |
outputs=[image_prompt],
|
238 |
)
|
239 |
|
|
|
240 |
generate_btn.click(
|
241 |
get_seed,
|
242 |
inputs=[randomize_seed, seed],
|
243 |
outputs=[seed],
|
244 |
).then(
|
245 |
image_to_3d,
|
246 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
outputs=[output_buf, video_output],
|
248 |
).then(
|
249 |
-
lambda: gr.Button(interactive=True),
|
250 |
-
outputs=[extract_glb_btn],
|
251 |
-
)
|
252 |
-
|
253 |
-
video_output.clear(
|
254 |
-
lambda: gr.Button(interactive=False),
|
255 |
-
outputs=[extract_glb_btn],
|
256 |
)
|
257 |
|
|
|
258 |
extract_glb_btn.click(
|
259 |
extract_glb,
|
260 |
inputs=[output_buf, mesh_simplify, texture_size],
|
261 |
outputs=[model_output, download_glb],
|
262 |
).then(
|
263 |
-
lambda: gr.Button(interactive=True),
|
264 |
outputs=[download_glb],
|
265 |
)
|
266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
model_output.clear(
|
268 |
-
lambda: gr.
|
269 |
-
outputs=[download_glb],
|
270 |
)
|
271 |
-
|
272 |
|
273 |
# Launch the Gradio app
|
274 |
if __name__ == "__main__":
|
|
|
275 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
276 |
pipeline.cuda()
|
277 |
try:
|
|
|
17 |
from trellis.utils import render_utils, postprocessing_utils
|
18 |
|
19 |
|
20 |
+
# Constants
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
23 |
os.makedirs(TMP_DIR, exist_ok=True)
|
24 |
|
25 |
|
26 |
+
# Session Management Functions
|
27 |
def start_session(req: gr.Request):
|
28 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
29 |
print(f'Creating user directory: {user_dir}')
|
30 |
os.makedirs(user_dir, exist_ok=True)
|
31 |
+
|
32 |
+
|
33 |
def end_session(req: gr.Request):
|
34 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
35 |
print(f'Removing user directory: {user_dir}')
|
36 |
shutil.rmtree(user_dir)
|
37 |
|
38 |
|
39 |
+
# Image Preprocessing Function
|
40 |
+
def preprocess_image(image: Image.Image) -> Image.Image:
|
41 |
"""
|
42 |
Preprocess the input image.
|
43 |
|
|
|
45 |
image (Image.Image): The input image.
|
46 |
|
47 |
Returns:
|
|
|
48 |
Image.Image: The preprocessed image.
|
49 |
"""
|
50 |
processed_image = pipeline.preprocess_image(image)
|
51 |
return processed_image
|
52 |
|
53 |
|
54 |
+
# State Packing and Unpacking Functions
|
55 |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
|
56 |
return {
|
57 |
'gaussian': {
|
|
|
68 |
},
|
69 |
'trial_id': trial_id,
|
70 |
}
|
71 |
+
|
72 |
+
|
73 |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
74 |
gs = Gaussian(
|
75 |
aabb=state['gaussian']['aabb'],
|
|
|
93 |
return gs, mesh, state['trial_id']
|
94 |
|
95 |
|
96 |
+
# Seed Management Function
|
97 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
98 |
"""
|
99 |
Get the random seed.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
randomize_seed (bool): Whether to randomize the seed.
|
103 |
+
seed (int): The provided seed value.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
int: The final seed to use.
|
107 |
"""
|
108 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
109 |
|
110 |
|
111 |
+
# Core 3D Generation Function
|
112 |
@spaces.GPU
|
113 |
def image_to_3d(
|
114 |
image: Image.Image,
|
|
|
129 |
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
130 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
131 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
132 |
+
req (gr.Request): Gradio request object.
|
133 |
|
134 |
Returns:
|
135 |
+
Tuple[dict, str]: The state dictionary and the path to the generated video.
|
|
|
136 |
"""
|
137 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
138 |
outputs = pipeline.run(
|
|
|
160 |
return state, video_path
|
161 |
|
162 |
|
163 |
+
# Existing GLB Extraction Function
|
164 |
@spaces.GPU
|
165 |
def extract_glb(
|
166 |
state: dict,
|
|
|
175 |
state (dict): The state of the generated 3D model.
|
176 |
mesh_simplify (float): The mesh simplification factor.
|
177 |
texture_size (int): The texture resolution.
|
178 |
+
req (gr.Request): Gradio request object.
|
179 |
|
180 |
Returns:
|
181 |
+
Tuple[str, str]: The path to the extracted GLB file.
|
182 |
"""
|
183 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
184 |
gs, mesh, trial_id = unpack_state(state)
|
|
|
189 |
return glb_path, glb_path
|
190 |
|
191 |
|
192 |
+
# New High-Quality GLB Extraction Function
|
193 |
+
@spaces.GPU
|
194 |
+
def extract_glb_high_quality(
|
195 |
+
state: dict,
|
196 |
+
req: gr.Request,
|
197 |
+
) -> Tuple[str, str]:
|
198 |
+
"""
|
199 |
+
Extract a high-quality GLB file from the 3D model without polygon reduction.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
state (dict): The state of the generated 3D model.
|
203 |
+
req (gr.Request): Gradio request object.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
Tuple[str, str]: The path to the high-quality GLB file.
|
207 |
+
"""
|
208 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
209 |
+
gs, mesh, trial_id = unpack_state(state)
|
210 |
+
# Set simplify to 0.0 to disable polygon reduction
|
211 |
+
# Set texture_size to 2048 for maximum texture quality
|
212 |
+
glb = postprocessing_utils.to_glb(gs, mesh, simplify=0.0, texture_size=2048, verbose=False)
|
213 |
+
glb_path = os.path.join(user_dir, f"{trial_id}_high_quality.glb")
|
214 |
+
glb.export(glb_path)
|
215 |
+
torch.cuda.empty_cache()
|
216 |
+
return glb_path, glb_path
|
217 |
+
|
218 |
+
|
219 |
+
# Gradio Interface Definition
|
220 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
221 |
gr.Markdown("""
|
222 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
223 |
+
* Upload an image and click "Generate" to create a 3D asset. If the image has an alpha channel, it will be used as the mask. Otherwise, the background will be removed automatically.
|
224 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
225 |
+
* **New:** Click "Download High Quality GLB" to download the GLB file without any polygon reduction and with maximum texture quality.
|
226 |
""")
|
227 |
+
|
228 |
with gr.Row():
|
229 |
with gr.Column():
|
230 |
+
# Image Input
|
231 |
+
image_prompt = gr.Image(
|
232 |
+
label="Image Prompt",
|
233 |
+
format="png",
|
234 |
+
image_mode="RGBA",
|
235 |
+
type="pil",
|
236 |
+
height=300
|
237 |
+
)
|
238 |
|
239 |
+
# Generation Settings Accordion
|
240 |
with gr.Accordion(label="Generation Settings", open=False):
|
241 |
+
seed = gr.Slider(
|
242 |
+
0,
|
243 |
+
MAX_SEED,
|
244 |
+
label="Seed",
|
245 |
+
value=0,
|
246 |
+
step=1
|
247 |
+
)
|
248 |
+
randomize_seed = gr.Checkbox(
|
249 |
+
label="Randomize Seed",
|
250 |
+
value=True
|
251 |
+
)
|
252 |
+
gr.Markdown("### Stage 1: Sparse Structure Generation")
|
253 |
with gr.Row():
|
254 |
+
ss_guidance_strength = gr.Slider(
|
255 |
+
0.0,
|
256 |
+
10.0,
|
257 |
+
label="Guidance Strength",
|
258 |
+
value=7.5,
|
259 |
+
step=0.1
|
260 |
+
)
|
261 |
+
ss_sampling_steps = gr.Slider(
|
262 |
+
1,
|
263 |
+
500,
|
264 |
+
label="Sampling Steps",
|
265 |
+
value=12,
|
266 |
+
step=1
|
267 |
+
)
|
268 |
+
gr.Markdown("### Stage 2: Structured Latent Generation")
|
269 |
with gr.Row():
|
270 |
+
slat_guidance_strength = gr.Slider(
|
271 |
+
0.0,
|
272 |
+
10.0,
|
273 |
+
label="Guidance Strength",
|
274 |
+
value=3.0,
|
275 |
+
step=0.1
|
276 |
+
)
|
277 |
+
slat_sampling_steps = gr.Slider(
|
278 |
+
1,
|
279 |
+
500,
|
280 |
+
label="Sampling Steps",
|
281 |
+
value=12,
|
282 |
+
step=1
|
283 |
+
)
|
284 |
+
|
285 |
+
# Generate Button
|
286 |
generate_btn = gr.Button("Generate")
|
287 |
|
288 |
+
# GLB Extraction Settings Accordion
|
289 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
290 |
+
mesh_simplify = gr.Slider(
|
291 |
+
0.0,
|
292 |
+
0.98,
|
293 |
+
label="Simplify",
|
294 |
+
value=0.95,
|
295 |
+
step=0.01
|
296 |
+
)
|
297 |
+
texture_size = gr.Slider(
|
298 |
+
512,
|
299 |
+
2048,
|
300 |
+
label="Texture Size",
|
301 |
+
value=1024,
|
302 |
+
step=512
|
303 |
+
)
|
304 |
|
305 |
+
# Existing Extract GLB Button
|
306 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
307 |
+
|
308 |
+
# New Extract High Quality GLB Button
|
309 |
+
extract_glb_high_quality_btn = gr.Button("Download High Quality GLB", interactive=False)
|
310 |
|
311 |
with gr.Column():
|
312 |
+
# Video Output
|
313 |
+
video_output = gr.Video(
|
314 |
+
label="Generated 3D Asset",
|
315 |
+
autoplay=True,
|
316 |
+
loop=True,
|
317 |
+
height=300
|
318 |
+
)
|
319 |
+
# 3D Model Display
|
320 |
+
model_output = LitModel3D(
|
321 |
+
label="Extracted GLB",
|
322 |
+
exposure=20.0,
|
323 |
+
height=300
|
324 |
+
)
|
325 |
+
# Existing Download GLB Button
|
326 |
+
download_glb = gr.DownloadButton(
|
327 |
+
label="Download GLB",
|
328 |
+
file_name="model.glb",
|
329 |
+
interactive=False
|
330 |
+
)
|
331 |
+
# New Download High Quality GLB Button
|
332 |
+
download_high_quality_glb = gr.DownloadButton(
|
333 |
+
label="Download High Quality GLB",
|
334 |
+
file_name="model_high_quality.glb",
|
335 |
+
interactive=False
|
336 |
+
)
|
337 |
+
|
338 |
+
# State Variables
|
339 |
output_buf = gr.State()
|
340 |
+
glb_path_state = gr.State() # For standard GLB
|
341 |
+
glb_high_quality_path_state = gr.State() # For high-quality GLB
|
342 |
|
343 |
+
# Example Images
|
344 |
with gr.Row():
|
345 |
examples = gr.Examples(
|
346 |
examples=[
|
|
|
354 |
examples_per_page=64,
|
355 |
)
|
356 |
|
357 |
+
# Event Handlers
|
358 |
demo.load(start_session)
|
359 |
demo.unload(end_session)
|
360 |
|
361 |
+
# Image Upload Handler
|
362 |
image_prompt.upload(
|
363 |
preprocess_image,
|
364 |
inputs=[image_prompt],
|
365 |
outputs=[image_prompt],
|
366 |
)
|
367 |
|
368 |
+
# Generate Button Click Handler
|
369 |
generate_btn.click(
|
370 |
get_seed,
|
371 |
inputs=[randomize_seed, seed],
|
372 |
outputs=[seed],
|
373 |
).then(
|
374 |
image_to_3d,
|
375 |
+
inputs=[
|
376 |
+
image_prompt,
|
377 |
+
seed,
|
378 |
+
ss_guidance_strength,
|
379 |
+
ss_sampling_steps,
|
380 |
+
slat_guidance_strength,
|
381 |
+
slat_sampling_steps
|
382 |
+
],
|
383 |
outputs=[output_buf, video_output],
|
384 |
).then(
|
385 |
+
lambda: gr.Button.update(interactive=True),
|
386 |
+
outputs=[extract_glb_btn, extract_glb_high_quality_btn],
|
|
|
|
|
|
|
|
|
|
|
387 |
)
|
388 |
|
389 |
+
# Existing Extract GLB Button Click Handler
|
390 |
extract_glb_btn.click(
|
391 |
extract_glb,
|
392 |
inputs=[output_buf, mesh_simplify, texture_size],
|
393 |
outputs=[model_output, download_glb],
|
394 |
).then(
|
395 |
+
lambda: gr.Button.update(interactive=True),
|
396 |
outputs=[download_glb],
|
397 |
)
|
398 |
|
399 |
+
# New Extract High Quality GLB Button Click Handler
|
400 |
+
extract_glb_high_quality_btn.click(
|
401 |
+
extract_glb_high_quality,
|
402 |
+
inputs=[output_buf],
|
403 |
+
outputs=[model_output, glb_high_quality_path_state],
|
404 |
+
).then(
|
405 |
+
lambda glb_path: {"value": glb_path} if glb_path else None,
|
406 |
+
inputs=[glb_high_quality_path_state],
|
407 |
+
outputs=[download_high_quality_glb],
|
408 |
+
).then(
|
409 |
+
lambda: gr.Button.update(interactive=True),
|
410 |
+
outputs=[download_high_quality_glb],
|
411 |
+
)
|
412 |
+
|
413 |
+
# Handle Clearing of Video Output
|
414 |
+
video_output.clear(
|
415 |
+
lambda: (gr.Button.update(interactive=False), gr.Button.update(interactive=False)),
|
416 |
+
outputs=[extract_glb_btn, extract_glb_high_quality_btn],
|
417 |
+
)
|
418 |
+
|
419 |
+
# Handle Clearing of Model Output
|
420 |
model_output.clear(
|
421 |
+
lambda: (gr.File.update(value=None), gr.File.update(value=None)),
|
422 |
+
outputs=[download_glb, download_high_quality_glb],
|
423 |
)
|
424 |
+
|
425 |
|
426 |
# Launch the Gradio app
|
427 |
if __name__ == "__main__":
|
428 |
+
# Initialize the pipeline
|
429 |
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
430 |
pipeline.cuda()
|
431 |
try:
|