File size: 2,501 Bytes
5b24075
 
 
 
3d2072b
5b24075
 
 
 
63ad23b
5b24075
63ad23b
 
5b24075
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249c808
5b24075
 
 
 
 
 
 
 
 
 
3d2072b
ab6af5b
 
 
 
 
5b24075
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import streamlit as st
import leafmap.foliumap as leafmap
from transformers import PretrainedConfig
from folium import Icon
import os

from messis.messis import Messis
from inference import perform_inference

from dotenv import load_dotenv

load_dotenv()
st.set_page_config(layout="wide")

# Load the model
@st.cache_resource
def load_model():
    config = PretrainedConfig.from_pretrained('crop-classification/messis', revision='47d9ca4')
    model = Messis.from_pretrained('crop-classification/messis', cache_dir='./hf_cache/', revision='47d9ca4')
    return model, config
model, config = load_model()

def perform_inference_step():
    st.title("Step 2: Perform Crop Classification")

    if "selected_location" not in st.session_state:
        st.error("No location selected. Please select a location first.")
        st.page_link("pages/1_Select_Location.py", label="Select Location", icon="📍")
        return

    lat, lon = st.session_state["selected_location"]

    # Sidebar
    instructions = """
    Click the button "Perform Crop Classification".

    _Note:_ 
    - Messis will classify the crop types for the fields in your selected location.
    - Hover over the fields to see the predicted and true crop type.
    - The satellite images might take a few seconds to load.
    """
    st.sidebar.header("Instructions")
    st.sidebar.markdown(instructions)

    # Initialize the map
    m = leafmap.Map(center=(lat, lon), zoom=10, draw_control=False)

    # Perform inference
    if st.button("Perform Crop Classification", type="primary"):
        predictions = perform_inference(lon, lat, model, config, debug=True)

        m.add_data(predictions,
            layer_name = "Predictions",
            column="Correct",
            add_legend=False,
            style_function=lambda x: {"fillColor": "green" if x["properties"]["Correct"] else "red", "color": "black", "weight": 0, "fillOpacity": 0.25},
        )
        st.success("Inference completed!")

    # Add Satellite Imagery
    m.add_tile_layer(
        url=os.environ.get("TILE_LAYER_URL"),
        name="Sentinel-2 Satellite Imagery",
        attribution="Copernicus Sentinel data 2019 / ESA",
    )

    # Show the POI on the map
    poi_icon = Icon(color="green", prefix="fa", icon="crosshairs")
    m.add_marker(location=[lat, lon], popup="Selected Location", layer_name="POI", icon=poi_icon)

    # Display the map in the Streamlit app
    m.to_streamlit()

if __name__ == "__main__":
    perform_inference_step()