Spaces:
Sleeping
Sleeping
File size: 2,501 Bytes
5b24075 3d2072b 5b24075 63ad23b 5b24075 63ad23b 5b24075 249c808 5b24075 3d2072b ab6af5b 5b24075 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import streamlit as st
import leafmap.foliumap as leafmap
from transformers import PretrainedConfig
from folium import Icon
import os
from messis.messis import Messis
from inference import perform_inference
from dotenv import load_dotenv
load_dotenv()
st.set_page_config(layout="wide")
# Load the model
@st.cache_resource
def load_model():
config = PretrainedConfig.from_pretrained('crop-classification/messis', revision='47d9ca4')
model = Messis.from_pretrained('crop-classification/messis', cache_dir='./hf_cache/', revision='47d9ca4')
return model, config
model, config = load_model()
def perform_inference_step():
st.title("Step 2: Perform Crop Classification")
if "selected_location" not in st.session_state:
st.error("No location selected. Please select a location first.")
st.page_link("pages/1_Select_Location.py", label="Select Location", icon="📍")
return
lat, lon = st.session_state["selected_location"]
# Sidebar
instructions = """
Click the button "Perform Crop Classification".
_Note:_
- Messis will classify the crop types for the fields in your selected location.
- Hover over the fields to see the predicted and true crop type.
- The satellite images might take a few seconds to load.
"""
st.sidebar.header("Instructions")
st.sidebar.markdown(instructions)
# Initialize the map
m = leafmap.Map(center=(lat, lon), zoom=10, draw_control=False)
# Perform inference
if st.button("Perform Crop Classification", type="primary"):
predictions = perform_inference(lon, lat, model, config, debug=True)
m.add_data(predictions,
layer_name = "Predictions",
column="Correct",
add_legend=False,
style_function=lambda x: {"fillColor": "green" if x["properties"]["Correct"] else "red", "color": "black", "weight": 0, "fillOpacity": 0.25},
)
st.success("Inference completed!")
# Add Satellite Imagery
m.add_tile_layer(
url=os.environ.get("TILE_LAYER_URL"),
name="Sentinel-2 Satellite Imagery",
attribution="Copernicus Sentinel data 2019 / ESA",
)
# Show the POI on the map
poi_icon = Icon(color="green", prefix="fa", icon="crosshairs")
m.add_marker(location=[lat, lon], popup="Selected Location", layer_name="POI", icon=poi_icon)
# Display the map in the Streamlit app
m.to_streamlit()
if __name__ == "__main__":
perform_inference_step()
|