File size: 7,716 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# A Consistent and Efficient Evaluation Strategy for Attribution Methods
# https://arxiv.org/abs/2202.00449
# Taken from https://raw.githubusercontent.com/tleemann/road_evaluation/main/imputations.py
# MIT License

# Copyright (c) 2022 Tobias Leemann

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.


# Implementations of our imputation models.
import torch
import numpy as np
from scipy.sparse import lil_matrix, csc_matrix
from scipy.sparse.linalg import spsolve
from typing import List, Callable
from pytorch_grad_cam.metrics.perturbation_confidence import PerturbationConfidenceMetric, \
    AveragerAcrossThresholds, \
    RemoveMostRelevantFirst, \
    RemoveLeastRelevantFirst

# The weights of the surrounding pixels
neighbors_weights = [((1, 1), 1 / 12),
                     ((0, 1), 1 / 6),
                     ((-1, 1), 1 / 12),
                     ((1, -1), 1 / 12),
                     ((0, -1), 1 / 6),
                     ((-1, -1), 1 / 12),
                     ((1, 0), 1 / 6),
                     ((-1, 0), 1 / 6)]


class NoisyLinearImputer:
    def __init__(self,
                 noise: float = 0.01,
                 weighting: List[float] = neighbors_weights):
        """
                Noisy linear imputation.
                noise: magnitude of noise to add (absolute, set to 0 for no noise)
                weighting: Weights of the neighboring pixels in the computation.
                List of tuples of (offset, weight)
        """
        self.noise = noise
        self.weighting = neighbors_weights

    @staticmethod
    def add_offset_to_indices(indices, offset, mask_shape):
        """ Add the corresponding offset to the indices.
    Return new indices plus a valid bit-vector. """
        cord1 = indices % mask_shape[1]
        cord0 = indices // mask_shape[1]
        cord0 += offset[0]
        cord1 += offset[1]
        valid = ((cord0 < 0) | (cord1 < 0) |
                 (cord0 >= mask_shape[0]) |
                 (cord1 >= mask_shape[1]))
        return ~valid, indices + offset[0] * mask_shape[1] + offset[1]

    @staticmethod
    def setup_sparse_system(mask, img, neighbors_weights):
        """ Vectorized version to set up the equation system.
                mask: (H, W)-tensor of missing pixels.
                Image: (H, W, C)-tensor of all values.
                Return (N,N)-System matrix, (N,C)-Right hand side for each of the C channels.
        """
        maskflt = mask.flatten()
        imgflat = img.reshape((img.shape[0], -1))
    # Indices that are imputed in the flattened mask:
        indices = np.argwhere(maskflt == 0).flatten()
        coords_to_vidx = np.zeros(len(maskflt), dtype=int)
        coords_to_vidx[indices] = np.arange(len(indices))
        numEquations = len(indices)
    # System matrix:
        A = lil_matrix((numEquations, numEquations))
        b = np.zeros((numEquations, img.shape[0]))
    # Sum of weights assigned:
        sum_neighbors = np.ones(numEquations)
        for n in neighbors_weights:
            offset, weight = n[0], n[1]
            # Take out outliers
            valid, new_coords = NoisyLinearImputer.add_offset_to_indices(
                indices, offset, mask.shape)
            valid_coords = new_coords[valid]
            valid_ids = np.argwhere(valid == 1).flatten()
            # Add values to the right hand-side
            has_values_coords = valid_coords[maskflt[valid_coords] > 0.5]
            has_values_ids = valid_ids[maskflt[valid_coords] > 0.5]
            b[has_values_ids, :] -= weight * imgflat[:, has_values_coords].T
            # Add weights to the system (left hand side)
# Find coordinates in the system.
            has_no_values = valid_coords[maskflt[valid_coords] < 0.5]
            variable_ids = coords_to_vidx[has_no_values]
            has_no_values_ids = valid_ids[maskflt[valid_coords] < 0.5]
            A[has_no_values_ids, variable_ids] = weight
            # Reduce weight for invalid
            sum_neighbors[np.argwhere(valid == 0).flatten()] = \
                sum_neighbors[np.argwhere(valid == 0).flatten()] - weight

        A[np.arange(numEquations), np.arange(numEquations)] = -sum_neighbors
        return A, b

    def __call__(self, img: torch.Tensor, mask: torch.Tensor):
        """ Our linear inputation scheme. """
        """
		This is the function to do the linear infilling
		img: original image (C,H,W)-tensor;
		mask: mask; (H,W)-tensor

		"""
        imgflt = img.reshape(img.shape[0], -1)
        maskflt = mask.reshape(-1)
    # Indices that need to be imputed.
        indices_linear = np.argwhere(maskflt == 0).flatten()
        # Set up sparse equation system, solve system.
        A, b = NoisyLinearImputer.setup_sparse_system(
            mask.numpy(), img.numpy(), neighbors_weights)
        res = torch.tensor(spsolve(csc_matrix(A), b), dtype=torch.float)

        # Fill the values with the solution of the system.
        img_infill = imgflt.clone()
        img_infill[:, indices_linear] = res.t() + self.noise * \
            torch.randn_like(res.t())

        return img_infill.reshape_as(img)


class ROADMostRelevantFirst(PerturbationConfidenceMetric):
    def __init__(self, percentile=80):
        super(ROADMostRelevantFirst, self).__init__(
            RemoveMostRelevantFirst(percentile, NoisyLinearImputer()))


class ROADLeastRelevantFirst(PerturbationConfidenceMetric):
    def __init__(self, percentile=20):
        super(ROADLeastRelevantFirst, self).__init__(
            RemoveLeastRelevantFirst(percentile, NoisyLinearImputer()))


class ROADMostRelevantFirstAverage(AveragerAcrossThresholds):
    def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]):
        super(ROADMostRelevantFirstAverage, self).__init__(
            ROADMostRelevantFirst, percentiles)


class ROADLeastRelevantFirstAverage(AveragerAcrossThresholds):
    def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]):
        super(ROADLeastRelevantFirstAverage, self).__init__(
            ROADLeastRelevantFirst, percentiles)


class ROADCombined:
    def __init__(self, percentiles=[10, 20, 30, 40, 50, 60, 70, 80, 90]):
        self.percentiles = percentiles
        self.morf_averager = ROADMostRelevantFirstAverage(percentiles)
        self.lerf_averager = ROADLeastRelevantFirstAverage(percentiles)

    def __call__(self,
                 input_tensor: torch.Tensor,
                 cams: np.ndarray,
                 targets: List[Callable],
                 model: torch.nn.Module):

        scores_lerf = self.lerf_averager(input_tensor, cams, targets, model)
        scores_morf = self.morf_averager(input_tensor, cams, targets, model)
        return (scores_lerf - scores_morf) / 2