File size: 8,845 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
import torch
import ttach as tta
from typing import Callable, List, Tuple
from einops import rearrange
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
from pytorch_grad_cam.utils.image import scale_cam_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget


class BaseCAM:
    def __init__(self,
                 model: torch.nn.Module,
                 target_layers: List[torch.nn.Module],
                 use_cuda: bool = False,
                 reshape_transform: Callable = None,
                 compute_input_gradient: bool = False,
                 uses_gradients: bool = True) -> None:
        self.model = model.eval()
        self.target_layers = target_layers
        self.cuda = use_cuda
        if self.cuda:
            self.model = model.cuda()
        self.reshape_transform = reshape_transform
        self.compute_input_gradient = compute_input_gradient
        self.uses_gradients = uses_gradients
        self.activations_and_grads = ActivationsAndGradients(
            self.model, target_layers, reshape_transform)

    """ Get a vector of weights for every channel in the target layer.
        Methods that return weights channels,
        will typically need to only implement this function. """

    def get_cam_weights(self,
                        input_tensor: torch.Tensor,
                        target_layers: List[torch.nn.Module],
                        targets: List[torch.nn.Module],
                        activations: torch.Tensor,
                        grads: torch.Tensor) -> np.ndarray:
        raise Exception("Not Implemented")

    def get_cam_image(self,
                      input_tensor: torch.Tensor,
                      target_layer: torch.nn.Module,
                      targets: List[torch.nn.Module],
                      activations: torch.Tensor,
                      grads: torch.Tensor,
                      eigen_smooth: bool = False) -> np.ndarray:

        weights = self.get_cam_weights(input_tensor,
                                       target_layer,
                                       targets,
                                       activations,
                                       grads)
        weighted_activations = weights[:, None, :] * activations
        H = W = int(weighted_activations.shape[1] ** 0.5)
        weighted_activations = rearrange(weighted_activations, "b (h w) c -> b c h w", h=H, w=W)
        if eigen_smooth:
            cam = get_2d_projection(weighted_activations)
        else:
            cam = weighted_activations.sum(axis=1)
        return cam

    def forward(self,
                input_tensor: torch.Tensor,
                targets: List[torch.nn.Module],
                eigen_smooth: bool = False,
                return_probs: bool = False) -> np.ndarray:

        if self.cuda:
            input_tensor = input_tensor.cuda()

        if self.compute_input_gradient:
            input_tensor = torch.autograd.Variable(input_tensor,
                                                   requires_grad=True)

        outputs = self.activations_and_grads(input_tensor)
        target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1)
        if targets is None:
            targets = [ClassifierOutputTarget(
                category) for category in target_categories]

        if self.uses_gradients:
            self.model.zero_grad()
            loss = sum([target(output)
                       for target, output in zip(targets, outputs)])
            loss.backward(retain_graph=True)

        # In most of the saliency attribution papers, the saliency is
        # computed with a single target layer.
        # Commonly it is the last convolutional layer.
        # Here we support passing a list with multiple target layers.
        # It will compute the saliency image for every image,
        # and then aggregate them (with a default mean aggregation).
        # This gives you more flexibility in case you just want to
        # use all conv layers for example, all Batchnorm layers,
        # or something else.
        cam_per_layer = self.compute_cam_per_layer(input_tensor,
                                                   targets,
                                                   eigen_smooth)
        if not return_probs:
            return self.aggregate_multi_layers(cam_per_layer), target_categories
        return self.aggregate_multi_layers(cam_per_layer), torch.nn.functional.softmax(outputs, dim=-1).detach().cpu().numpy()

    def get_target_width_height(self,
                                input_tensor: torch.Tensor) -> Tuple[int, int]:
        width, height = input_tensor.size(-1), input_tensor.size(-2)
        return width, height

    def compute_cam_per_layer(
            self,
            input_tensor: torch.Tensor,
            targets: List[torch.nn.Module],
            eigen_smooth: bool) -> np.ndarray:
        activations_list = [a.cpu().data.numpy()
                            for a in self.activations_and_grads.activations]
        grads_list = [g.cpu().data.numpy()
                      for g in self.activations_and_grads.gradients]
        target_size = self.get_target_width_height(input_tensor)

        cam_per_target_layer = []
        # Loop over the saliency image from every layer
        for i in range(len(self.target_layers)):
            target_layer = self.target_layers[i]
            layer_activations = None
            layer_grads = None
            if i < len(activations_list):
                layer_activations = activations_list[i]
            if i < len(grads_list):
                layer_grads = grads_list[i]

            cam = self.get_cam_image(input_tensor,
                                     target_layer,
                                     targets,
                                     layer_activations,
                                     layer_grads,
                                     eigen_smooth)
            cam = np.maximum(cam, 0)
            scaled = scale_cam_image(cam, target_size)
            cam_per_target_layer.append(scaled[:, None, :])

        return cam_per_target_layer

    def aggregate_multi_layers(
            self,
            cam_per_target_layer: np.ndarray) -> np.ndarray:
        cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
        cam_per_target_layer = np.maximum(cam_per_target_layer, 0)
        result = np.mean(cam_per_target_layer, axis=1)
        return scale_cam_image(result)

    def forward_augmentation_smoothing(self,
                                       input_tensor: torch.Tensor,
                                       targets: List[torch.nn.Module],
                                       eigen_smooth: bool = False,
                                       return_probs: bool = False) -> np.ndarray:
        transforms = tta.Compose(
            [
                tta.HorizontalFlip(),
                tta.Multiply(factors=[0.9, 1, 1.1]),
            ]
        )
        cams = []
        for transform in transforms:
            augmented_tensor = transform.augment_image(input_tensor)
            cam, b = self.forward(augmented_tensor,
                               targets,
                               eigen_smooth, return_probs=return_probs)

            # The ttach library expects a tensor of size BxCxHxW
            cam = cam[:, None, :, :]
            cam = torch.from_numpy(cam)
            cam = transform.deaugment_mask(cam)

            # Back to numpy float32, HxW
            cam = cam.numpy()
            cam = cam[:, 0, :, :]
            cams.append(cam)

        cam = np.mean(np.float32(cams), axis=0)
        return cam, b

    def __call__(self,
                 input_tensor: torch.Tensor,
                 targets: List[torch.nn.Module] = None,
                 aug_smooth: bool = False,
                 eigen_smooth: bool = False,
                 return_probs: bool = False) -> np.ndarray:

        # Smooth the CAM result with test time augmentation
        if aug_smooth is True:
            return self.forward_augmentation_smoothing(
                input_tensor, targets, eigen_smooth, return_probs=return_probs)

        return self.forward(input_tensor, targets,
                            eigen_smooth, return_probs=return_probs)

    def __del__(self):
        self.activations_and_grads.release()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, exc_tb):
        self.activations_and_grads.release()
        if isinstance(exc_value, IndexError):
            # Handle IndexError here...
            print(
                f"An exception occurred in CAM with block: {exc_type}. Message: {exc_value}")
            return True