File size: 9,039 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
""" Image to Patch Embedding using Conv2d

A convolution based approach to patchifying a 2D image w/ embedding projection.

Based on code in:
  * https://github.com/google-research/vision_transformer
  * https://github.com/google-research/big_vision/tree/main/big_vision

Hacked together by / Copyright 2020 Ross Wightman
"""
import logging
from typing import Callable, List, Optional, Tuple, Union

import torch
from torch import nn as nn
import torch.nn.functional as F

from .format import Format, nchw_to
from .helpers import to_2tuple
from .trace_utils import _assert

_logger = logging.getLogger(__name__)


class PatchEmbed(nn.Module):
    """ 2D Image to Patch Embedding
    """
    output_fmt: Format

    def __init__(
            self,
            img_size: Optional[int] = 224,
            patch_size: int = 16,
            in_chans: int = 3,
            embed_dim: int = 768,
            norm_layer: Optional[Callable] = None,
            flatten: bool = True,
            output_fmt: Optional[str] = None,
            bias: bool = True,
            strict_img_size: bool = True,
    ):
        super().__init__()
        self.patch_size = to_2tuple(patch_size)
        if img_size is not None:
            self.img_size = to_2tuple(img_size)
            self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)])
            self.num_patches = self.grid_size[0] * self.grid_size[1]
        else:
            self.img_size = None
            self.grid_size = None
            self.num_patches = None

        if output_fmt is not None:
            self.flatten = False
            self.output_fmt = Format(output_fmt)
        else:
            # flatten spatial dim and transpose to channels last, kept for bwd compat
            self.flatten = flatten
            self.output_fmt = Format.NCHW
        self.strict_img_size = strict_img_size

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        B, C, H, W = x.shape
        if self.img_size is not None:
            if self.strict_img_size:
                _assert(H == self.img_size[0], f"Input height ({H}) doesn't match model ({self.img_size[0]}).")
                _assert(W == self.img_size[1], f"Input width ({W}) doesn't match model ({self.img_size[1]}).")
            else:
                _assert(
                    H % self.patch_size[0] == 0,
                    f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
                )
                _assert(
                    W % self.patch_size[1] == 0,
                    f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
                )

        x = self.proj(x)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # NCHW -> NLC
        elif self.output_fmt != Format.NCHW:
            x = nchw_to(x, self.output_fmt)
        x = self.norm(x)
        return x


class PatchEmbedWithSize(PatchEmbed):
    """ 2D Image to Patch Embedding
    """
    output_fmt: Format

    def __init__(
            self,
            img_size: Optional[int] = 224,
            patch_size: int = 16,
            in_chans: int = 3,
            embed_dim: int = 768,
            norm_layer: Optional[Callable] = None,
            flatten: bool = True,
            output_fmt: Optional[str] = None,
            bias: bool = True,
    ):
        super().__init__(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer,
            flatten=flatten,
            output_fmt=output_fmt,
            bias=bias,
        )

    def forward(self, x) -> Tuple[torch.Tensor, List[int]]:
        B, C, H, W = x.shape
        if self.img_size is not None:
            _assert(H % self.patch_size[0] == 0, f"Input image height ({H}) must be divisible by patch size ({self.patch_size[0]}).")
            _assert(W % self.patch_size[1] == 0, f"Input image width ({W}) must be divisible by patch size ({self.patch_size[1]}).")

        x = self.proj(x)
        grid_size = x.shape[-2:]
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # NCHW -> NLC
        elif self.output_fmt != Format.NCHW:
            x = nchw_to(x, self.output_fmt)
        x = self.norm(x)
        return x, grid_size


def resample_patch_embed(
        patch_embed,
        new_size: List[int],
        interpolation: str = 'bicubic',
        antialias: bool = True,
        verbose: bool = False,
):
    """Resample the weights of the patch embedding kernel to target resolution.
    We resample the patch embedding kernel by approximately inverting the effect
    of patch resizing.

    Code based on:
      https://github.com/google-research/big_vision/blob/b00544b81f8694488d5f36295aeb7972f3755ffe/big_vision/models/proj/flexi/vit.py

    With this resizing, we can for example load a B/8 filter into a B/16 model
    and, on 2x larger input image, the result will match.

    Args:
        patch_embed: original parameter to be resized.
        new_size (tuple(int, int): target shape (height, width)-only.
        interpolation (str): interpolation for resize
        antialias (bool): use anti-aliasing filter in resize
        verbose (bool): log operation
    Returns:
        Resized patch embedding kernel.
    """
    import numpy as np
    try:
        import functorch
        vmap = functorch.vmap
    except ImportError:
        if hasattr(torch, 'vmap'):
            vmap = torch.vmap
        else:
            assert False, "functorch or a version of torch with vmap is required for FlexiViT resizing."

    assert len(patch_embed.shape) == 4, "Four dimensions expected"
    assert len(new_size) == 2, "New shape should only be hw"
    old_size = patch_embed.shape[-2:]
    if tuple(old_size) == tuple(new_size):
        return patch_embed

    if verbose:
        _logger.info(f"Resize patch embedding {patch_embed.shape} to {new_size}, w/ {interpolation} interpolation.")

    def resize(x_np, _new_size):
        x_tf = torch.Tensor(x_np)[None, None, ...]
        x_upsampled = F.interpolate(
            x_tf, size=_new_size, mode=interpolation, antialias=antialias)[0, 0, ...].numpy()
        return x_upsampled

    def get_resize_mat(_old_size, _new_size):
        mat = []
        for i in range(np.prod(_old_size)):
            basis_vec = np.zeros(_old_size)
            basis_vec[np.unravel_index(i, _old_size)] = 1.
            mat.append(resize(basis_vec, _new_size).reshape(-1))
        return np.stack(mat).T

    resize_mat = get_resize_mat(old_size, new_size)
    resize_mat_pinv = torch.Tensor(np.linalg.pinv(resize_mat.T))

    def resample_kernel(kernel):
        resampled_kernel = resize_mat_pinv @ kernel.reshape(-1)
        return resampled_kernel.reshape(new_size)

    v_resample_kernel = vmap(vmap(resample_kernel, 0, 0), 1, 1)
    return v_resample_kernel(patch_embed)


# def divs(n, m=None):
#     m = m or n // 2
#     if m == 1:
#         return [1]
#     if n % m == 0:
#         return [m] + divs(n, m - 1)
#     return divs(n, m - 1)
#
#
# class FlexiPatchEmbed(nn.Module):
#     """ 2D Image to Patch Embedding w/ Flexible Patch sizes (FlexiViT)
#     FIXME WIP
#     """
#     def __init__(
#             self,
#             img_size=240,
#             patch_size=16,
#             in_chans=3,
#             embed_dim=768,
#             base_img_size=240,
#             base_patch_size=32,
#             norm_layer=None,
#             flatten=True,
#             bias=True,
#     ):
#         super().__init__()
#         self.img_size = to_2tuple(img_size)
#         self.patch_size = to_2tuple(patch_size)
#         self.num_patches = 0
#
#         # full range for 240 = (5, 6, 8, 10, 12, 14, 15, 16, 20, 24, 30, 40, 48)
#         self.seqhw = (6, 8, 10, 12, 14, 15, 16, 20, 24, 30)
#
#         self.base_img_size = to_2tuple(base_img_size)
#         self.base_patch_size = to_2tuple(base_patch_size)
#         self.base_grid_size = tuple([i // p for i, p in zip(self.base_img_size, self.base_patch_size)])
#         self.base_num_patches = self.base_grid_size[0] * self.base_grid_size[1]
#
#         self.flatten = flatten
#         self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=bias)
#         self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
#
#     def forward(self, x):
#         B, C, H, W = x.shape
#
#         if self.patch_size == self.base_patch_size:
#             weight = self.proj.weight
#         else:
#             weight = resample_patch_embed(self.proj.weight, self.patch_size)
#         patch_size = self.patch_size
#         x = F.conv2d(x, weight, bias=self.proj.bias, stride=patch_size)
#         if self.flatten:
#             x = x.flatten(2).transpose(1, 2)  # BCHW -> BNC
#         x = self.norm(x)
#         return x