File size: 14,314 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
""" Sin-cos, fourier, rotary position embedding modules and functions

Hacked together by / Copyright 2022 Ross Wightman
"""
import math
from typing import List, Tuple, Optional, Union

import torch
from torch import nn as nn

from .trace_utils import _assert


def pixel_freq_bands(
        num_bands: int,
        max_freq: float = 224.,
        linear_bands: bool = True,
        dtype: torch.dtype = torch.float32,
        device: Optional[torch.device] = None,
):
    if linear_bands:
        bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=dtype, device=device)
    else:
        bands = 2 ** torch.linspace(0, math.log(max_freq, 2) - 1, num_bands, dtype=dtype, device=device)
    return bands * torch.pi


def freq_bands(
        num_bands: int,
        temperature: float = 10000.,
        step: int = 2,
        dtype: torch.dtype = torch.float32,
        device: Optional[torch.device] = None,
) -> torch.Tensor:
    bands = 1. / (temperature ** (torch.arange(0, num_bands, step, dtype=dtype, device=device) / num_bands))
    return bands


def build_sincos2d_pos_embed(
        feat_shape: List[int],
        dim: int = 64,
        temperature: float = 10000.,
        reverse_coord: bool = False,
        interleave_sin_cos: bool = False,
        dtype: torch.dtype = torch.float32,
        device: Optional[torch.device] = None
) -> torch.Tensor:
    """

    Args:
        feat_shape:
        dim:
        temperature:
        reverse_coord: stack grid order W, H instead of H, W
        interleave_sin_cos: sin, cos, sin, cos stack instead of sin, sin, cos, cos
        dtype:
        device:

    Returns:

    """
    assert dim % 4 == 0, 'Embed dimension must be divisible by 4 for sin-cos 2D position embedding'
    pos_dim = dim // 4
    bands = freq_bands(pos_dim, temperature=temperature, step=1, dtype=dtype, device=device)

    if reverse_coord:
        feat_shape = feat_shape[::-1]  # stack W, H instead of H, W
    grid = torch.stack(torch.meshgrid(
        [torch.arange(s, device=device, dtype=dtype) for s in feat_shape])).flatten(1).transpose(0, 1)
    pos2 = grid.unsqueeze(-1) * bands.unsqueeze(0)
    # FIXME add support for unflattened spatial dim?

    stack_dim = 2 if interleave_sin_cos else 1  # stack sin, cos, sin, cos  instead of sin sin cos cos
    pos_emb = torch.stack([torch.sin(pos2), torch.cos(pos2)], dim=stack_dim).flatten(1)
    return pos_emb


def build_fourier_pos_embed(
        feat_shape: List[int],
        bands: Optional[torch.Tensor] = None,
        num_bands: int = 64,
        max_res: int = 224,
        temperature: float = 10000.,
        linear_bands: bool = False,
        include_grid: bool = False,
        in_pixels: bool = True,
        ref_feat_shape: Optional[List[int]] = None,
        dtype: torch.dtype = torch.float32,
        device: Optional[torch.device] = None,
) -> List[torch.Tensor]:
    """

    Args:
        feat_shape: Feature shape for embedding.
        bands: Pre-calculated frequency bands.
        num_bands: Number of frequency bands (determines output dim).
        max_res: Maximum resolution for pixel based freq.
        temperature: Temperature for non-pixel freq.
        linear_bands: Linear band spacing for pixel based freq.
        include_grid: Include the spatial grid in output.
        in_pixels: Output in pixel freq.
        ref_feat_shape: Reference feature shape for resize / fine-tune.
        dtype: Output dtype.
        device: Output device.

    Returns:

    """
    if bands is None:
        if in_pixels:
            bands = pixel_freq_bands(
                num_bands,
                float(max_res),
                linear_bands=linear_bands,
                dtype=dtype,
                device=device,
            )
        else:
            bands = freq_bands(
                num_bands,
                temperature=temperature,
                step=1,
                dtype=dtype,
                device=device,
            )
    else:
        if device is None:
            device = bands.device
        if dtype is None:
            dtype = bands.dtype

    if in_pixels:
        t = [torch.linspace(-1., 1., steps=s, device=device, dtype=dtype) for s in feat_shape]
    else:
        t = [torch.arange(s, device=device, dtype=dtype) for s in feat_shape]

    if ref_feat_shape is not None:
        # eva's scheme for resizing rope embeddings (ref shape = pretrain)
        t = [x / f * r for x, f, r in zip(t, feat_shape, ref_feat_shape)]

    grid = torch.stack(torch.meshgrid(t), dim=-1)
    grid = grid.unsqueeze(-1)
    pos = grid * bands

    pos_sin, pos_cos = pos.sin(), pos.cos()
    out = [grid, pos_sin, pos_cos] if include_grid else [pos_sin, pos_cos]
    return out


class FourierEmbed(nn.Module):

    def __init__(
            self,
            max_res: int = 224,
            num_bands: int = 64,
            concat_grid=True,
            keep_spatial=False,
    ):
        super().__init__()
        self.max_res = max_res
        self.num_bands = num_bands
        self.concat_grid = concat_grid
        self.keep_spatial = keep_spatial
        self.register_buffer(
            'bands',
            pixel_freq_bands(max_res, num_bands),
            persistent=False,
        )

    def forward(self, x):
        B, C = x.shape[:2]
        feat_shape = x.shape[2:]
        emb = build_fourier_pos_embed(
            feat_shape,
            self.bands,
            include_grid=self.concat_grid,
            dtype=x.dtype,
            device=x.device,
        )
        emb = torch.cat(emb, dim=-1)
        emb = emb.transpose(-1, -2).flatten(len(feat_shape))
        batch_expand = (B,) + (-1,) * (x.ndim - 1)

        # FIXME support nD
        if self.keep_spatial:
            x = torch.cat([x, emb.unsqueeze(0).expand(batch_expand).permute(0, 3, 1, 2)], dim=1)
        else:
            x = torch.cat([x.permute(0, 2, 3, 1), emb.unsqueeze(0).expand(batch_expand)], dim=-1)
            x = x.reshape(B, feat_shape.numel(), -1)

        return x


def rot(x):
    return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape)


def apply_rot_embed(x: torch.Tensor, sin_emb, cos_emb):
    if sin_emb.ndim == 3:
        return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x)
    return x * cos_emb + rot(x) * sin_emb


def apply_rot_embed_list(x: List[torch.Tensor], sin_emb, cos_emb):
    if isinstance(x, torch.Tensor):
        x = [x]
    return [t * cos_emb + rot(t) * sin_emb for t in x]


def apply_rot_embed_cat(x: torch.Tensor, emb):
    sin_emb, cos_emb = emb.tensor_split(2, -1)
    if sin_emb.ndim == 3:
        return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x)
    return x * cos_emb + rot(x) * sin_emb


def apply_keep_indices_nlc(x, pos_embed, keep_indices):
    pos_embed = pos_embed.unsqueeze(0).expand(x.shape[0], -1, -1)
    pos_embed = pos_embed.gather(1, keep_indices.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1]))
    return pos_embed


def build_rotary_pos_embed(
        feat_shape: List[int],
        bands: Optional[torch.Tensor] = None,
        dim: int = 64,
        max_res: int = 224,
        temperature: float = 10000.,
        linear_bands: bool = False,
        in_pixels: bool = True,
        ref_feat_shape: Optional[List[int]] = None,
        dtype: torch.dtype = torch.float32,
        device: Optional[torch.device] = None,
):
    """

    Args:
        feat_shape: Spatial shape of the target tensor for embedding.
        bands: Optional pre-generated frequency bands
        dim: Output dimension of embedding tensor.
        max_res: Maximum resolution for pixel mode.
        temperature: Temperature (inv freq) for non-pixel mode
        linear_bands: Linearly (instead of log) spaced bands for pixel mode
        in_pixels: Pixel vs language (inv freq) mode.
        dtype: Output dtype.
        device: Output device.

    Returns:

    """
    sin_emb, cos_emb = build_fourier_pos_embed(
        feat_shape,
        bands=bands,
        num_bands=dim // 4,
        max_res=max_res,
        temperature=temperature,
        linear_bands=linear_bands,
        in_pixels=in_pixels,
        ref_feat_shape=ref_feat_shape,
        device=device,
        dtype=dtype,
    )
    num_spatial_dim = 1
    # this would be much nicer as a .numel() call to torch.Size(), but torchscript sucks
    for x in feat_shape:
        num_spatial_dim *= x
    sin_emb = sin_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
    cos_emb = cos_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
    return sin_emb, cos_emb


class RotaryEmbedding(nn.Module):
    """ Rotary position embedding

    NOTE: This is my initial attempt at impl rotary embedding for spatial use, it has not
    been well tested, and will likely change. It will be moved to its own file.

    The following impl/resources were referenced for this impl:
    * https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
    * https://blog.eleuther.ai/rotary-embeddings/
    """

    def __init__(
            self,
            dim,
            max_res=224,
            temperature=10000,
            in_pixels=True,
            linear_bands: bool = False,
            feat_shape: Optional[List[int]] = None,
            ref_feat_shape: Optional[List[int]] = None,
    ):
        super().__init__()
        self.dim = dim
        self.max_res = max_res
        self.temperature = temperature
        self.in_pixels = in_pixels
        self.feat_shape = feat_shape
        self.ref_feat_shape = ref_feat_shape

        if feat_shape is None:
            # only cache bands
            if in_pixels:
                bands = pixel_freq_bands(
                    dim // 4,
                    float(max_res),
                    linear_bands=linear_bands,
                )
            else:
                bands = freq_bands(
                    dim // 4,
                    temperature=temperature,
                    step=1,
                )
                print(bands)
            self.register_buffer(
                'bands',
                bands,
                persistent=False,
            )
            self.pos_embed_sin = None
            self.pos_embed_cos = None
        else:
            # cache full sin/cos embeddings if shape provided up front
            emb_sin, emb_cos = build_rotary_pos_embed(
                feat_shape=feat_shape,
                dim=dim,
                max_res=max_res,
                linear_bands=linear_bands,
                in_pixels=in_pixels,
                ref_feat_shape=self.ref_feat_shape,
            )
            self.bands = None
            self.register_buffer(
                'pos_embed_sin',
                emb_sin,
                persistent=False,
            )
            self.register_buffer(
                'pos_embed_cos',
                emb_cos,
                persistent=False,
            )

    def get_embed(self, shape: Optional[List[int]] = None):
        if self.bands is not None:
            # rebuild embeddings every call, use if target shape changes
            assert shape is not None
            return build_rotary_pos_embed(
                shape,
                self.bands,
                in_pixels=self.in_pixels,
            )
        else:
            return self.pos_embed_sin, self.pos_embed_cos

    def forward(self, x):
        # assuming channel-first tensor where spatial dim are >= 2
        sin_emb, cos_emb = self.get_embed(x.shape[2:])
        return apply_rot_embed(x, sin_emb, cos_emb)


class RotaryEmbeddingCat(nn.Module):
    """ Rotary position embedding w/ concatenatd sin & cos

    The following impl/resources were referenced for this impl:
    * https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
    * https://blog.eleuther.ai/rotary-embeddings/
    """

    def __init__(
            self,
            dim,
            max_res=224,
            temperature=10000,
            in_pixels=True,
            linear_bands: bool = False,
            feat_shape: Optional[List[int]] = None,
            ref_feat_shape: Optional[List[int]] = None,
    ):
        super().__init__()
        self.dim = dim
        self.max_res = max_res
        self.temperature = temperature
        self.in_pixels = in_pixels
        self.feat_shape = feat_shape
        self.ref_feat_shape = ref_feat_shape

        if feat_shape is None:
            # only cache bands
            if in_pixels:
                bands = pixel_freq_bands(
                    dim // 4,
                    float(max_res),
                    linear_bands=linear_bands,
                )
            else:
                bands = freq_bands(
                    dim // 4,
                    temperature=temperature,
                    step=1,
                )
                print(bands)
            self.register_buffer(
                'bands',
                bands,
                persistent=False,
            )
            self.embed = None
        else:
            # cache full sin/cos embeddings if shape provided up front
            embeds = build_rotary_pos_embed(
                feat_shape=feat_shape,
                dim=dim,
                max_res=max_res,
                linear_bands=linear_bands,
                in_pixels=in_pixels,
                ref_feat_shape=self.ref_feat_shape,
            )
            self.bands = None
            self.register_buffer(
                'pos_embed',
                torch.cat(embeds, -1),
                persistent=False,
            )

    def get_embed(self, shape: Optional[List[int]] = None):
        if self.bands is not None:
            # rebuild embeddings every call, use if target shape changes
            _assert(shape is not None, 'valid shape needed')
            embeds = build_rotary_pos_embed(
                shape,
                self.bands,
                in_pixels=self.in_pixels,
            )
            return torch.cat(embeds, -1)
        else:
            return self.pos_embed

    def forward(self, x):
        # assuming channel-first tensor where spatial dim are >= 2
        pos_embed = self.get_embed(x.shape[2:])
        return apply_rot_embed_cat(x, pos_embed)