File size: 14,314 Bytes
da716ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
""" Sin-cos, fourier, rotary position embedding modules and functions
Hacked together by / Copyright 2022 Ross Wightman
"""
import math
from typing import List, Tuple, Optional, Union
import torch
from torch import nn as nn
from .trace_utils import _assert
def pixel_freq_bands(
num_bands: int,
max_freq: float = 224.,
linear_bands: bool = True,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
):
if linear_bands:
bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=dtype, device=device)
else:
bands = 2 ** torch.linspace(0, math.log(max_freq, 2) - 1, num_bands, dtype=dtype, device=device)
return bands * torch.pi
def freq_bands(
num_bands: int,
temperature: float = 10000.,
step: int = 2,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
) -> torch.Tensor:
bands = 1. / (temperature ** (torch.arange(0, num_bands, step, dtype=dtype, device=device) / num_bands))
return bands
def build_sincos2d_pos_embed(
feat_shape: List[int],
dim: int = 64,
temperature: float = 10000.,
reverse_coord: bool = False,
interleave_sin_cos: bool = False,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None
) -> torch.Tensor:
"""
Args:
feat_shape:
dim:
temperature:
reverse_coord: stack grid order W, H instead of H, W
interleave_sin_cos: sin, cos, sin, cos stack instead of sin, sin, cos, cos
dtype:
device:
Returns:
"""
assert dim % 4 == 0, 'Embed dimension must be divisible by 4 for sin-cos 2D position embedding'
pos_dim = dim // 4
bands = freq_bands(pos_dim, temperature=temperature, step=1, dtype=dtype, device=device)
if reverse_coord:
feat_shape = feat_shape[::-1] # stack W, H instead of H, W
grid = torch.stack(torch.meshgrid(
[torch.arange(s, device=device, dtype=dtype) for s in feat_shape])).flatten(1).transpose(0, 1)
pos2 = grid.unsqueeze(-1) * bands.unsqueeze(0)
# FIXME add support for unflattened spatial dim?
stack_dim = 2 if interleave_sin_cos else 1 # stack sin, cos, sin, cos instead of sin sin cos cos
pos_emb = torch.stack([torch.sin(pos2), torch.cos(pos2)], dim=stack_dim).flatten(1)
return pos_emb
def build_fourier_pos_embed(
feat_shape: List[int],
bands: Optional[torch.Tensor] = None,
num_bands: int = 64,
max_res: int = 224,
temperature: float = 10000.,
linear_bands: bool = False,
include_grid: bool = False,
in_pixels: bool = True,
ref_feat_shape: Optional[List[int]] = None,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
) -> List[torch.Tensor]:
"""
Args:
feat_shape: Feature shape for embedding.
bands: Pre-calculated frequency bands.
num_bands: Number of frequency bands (determines output dim).
max_res: Maximum resolution for pixel based freq.
temperature: Temperature for non-pixel freq.
linear_bands: Linear band spacing for pixel based freq.
include_grid: Include the spatial grid in output.
in_pixels: Output in pixel freq.
ref_feat_shape: Reference feature shape for resize / fine-tune.
dtype: Output dtype.
device: Output device.
Returns:
"""
if bands is None:
if in_pixels:
bands = pixel_freq_bands(
num_bands,
float(max_res),
linear_bands=linear_bands,
dtype=dtype,
device=device,
)
else:
bands = freq_bands(
num_bands,
temperature=temperature,
step=1,
dtype=dtype,
device=device,
)
else:
if device is None:
device = bands.device
if dtype is None:
dtype = bands.dtype
if in_pixels:
t = [torch.linspace(-1., 1., steps=s, device=device, dtype=dtype) for s in feat_shape]
else:
t = [torch.arange(s, device=device, dtype=dtype) for s in feat_shape]
if ref_feat_shape is not None:
# eva's scheme for resizing rope embeddings (ref shape = pretrain)
t = [x / f * r for x, f, r in zip(t, feat_shape, ref_feat_shape)]
grid = torch.stack(torch.meshgrid(t), dim=-1)
grid = grid.unsqueeze(-1)
pos = grid * bands
pos_sin, pos_cos = pos.sin(), pos.cos()
out = [grid, pos_sin, pos_cos] if include_grid else [pos_sin, pos_cos]
return out
class FourierEmbed(nn.Module):
def __init__(
self,
max_res: int = 224,
num_bands: int = 64,
concat_grid=True,
keep_spatial=False,
):
super().__init__()
self.max_res = max_res
self.num_bands = num_bands
self.concat_grid = concat_grid
self.keep_spatial = keep_spatial
self.register_buffer(
'bands',
pixel_freq_bands(max_res, num_bands),
persistent=False,
)
def forward(self, x):
B, C = x.shape[:2]
feat_shape = x.shape[2:]
emb = build_fourier_pos_embed(
feat_shape,
self.bands,
include_grid=self.concat_grid,
dtype=x.dtype,
device=x.device,
)
emb = torch.cat(emb, dim=-1)
emb = emb.transpose(-1, -2).flatten(len(feat_shape))
batch_expand = (B,) + (-1,) * (x.ndim - 1)
# FIXME support nD
if self.keep_spatial:
x = torch.cat([x, emb.unsqueeze(0).expand(batch_expand).permute(0, 3, 1, 2)], dim=1)
else:
x = torch.cat([x.permute(0, 2, 3, 1), emb.unsqueeze(0).expand(batch_expand)], dim=-1)
x = x.reshape(B, feat_shape.numel(), -1)
return x
def rot(x):
return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape)
def apply_rot_embed(x: torch.Tensor, sin_emb, cos_emb):
if sin_emb.ndim == 3:
return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x)
return x * cos_emb + rot(x) * sin_emb
def apply_rot_embed_list(x: List[torch.Tensor], sin_emb, cos_emb):
if isinstance(x, torch.Tensor):
x = [x]
return [t * cos_emb + rot(t) * sin_emb for t in x]
def apply_rot_embed_cat(x: torch.Tensor, emb):
sin_emb, cos_emb = emb.tensor_split(2, -1)
if sin_emb.ndim == 3:
return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x)
return x * cos_emb + rot(x) * sin_emb
def apply_keep_indices_nlc(x, pos_embed, keep_indices):
pos_embed = pos_embed.unsqueeze(0).expand(x.shape[0], -1, -1)
pos_embed = pos_embed.gather(1, keep_indices.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1]))
return pos_embed
def build_rotary_pos_embed(
feat_shape: List[int],
bands: Optional[torch.Tensor] = None,
dim: int = 64,
max_res: int = 224,
temperature: float = 10000.,
linear_bands: bool = False,
in_pixels: bool = True,
ref_feat_shape: Optional[List[int]] = None,
dtype: torch.dtype = torch.float32,
device: Optional[torch.device] = None,
):
"""
Args:
feat_shape: Spatial shape of the target tensor for embedding.
bands: Optional pre-generated frequency bands
dim: Output dimension of embedding tensor.
max_res: Maximum resolution for pixel mode.
temperature: Temperature (inv freq) for non-pixel mode
linear_bands: Linearly (instead of log) spaced bands for pixel mode
in_pixels: Pixel vs language (inv freq) mode.
dtype: Output dtype.
device: Output device.
Returns:
"""
sin_emb, cos_emb = build_fourier_pos_embed(
feat_shape,
bands=bands,
num_bands=dim // 4,
max_res=max_res,
temperature=temperature,
linear_bands=linear_bands,
in_pixels=in_pixels,
ref_feat_shape=ref_feat_shape,
device=device,
dtype=dtype,
)
num_spatial_dim = 1
# this would be much nicer as a .numel() call to torch.Size(), but torchscript sucks
for x in feat_shape:
num_spatial_dim *= x
sin_emb = sin_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
cos_emb = cos_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
return sin_emb, cos_emb
class RotaryEmbedding(nn.Module):
""" Rotary position embedding
NOTE: This is my initial attempt at impl rotary embedding for spatial use, it has not
been well tested, and will likely change. It will be moved to its own file.
The following impl/resources were referenced for this impl:
* https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
* https://blog.eleuther.ai/rotary-embeddings/
"""
def __init__(
self,
dim,
max_res=224,
temperature=10000,
in_pixels=True,
linear_bands: bool = False,
feat_shape: Optional[List[int]] = None,
ref_feat_shape: Optional[List[int]] = None,
):
super().__init__()
self.dim = dim
self.max_res = max_res
self.temperature = temperature
self.in_pixels = in_pixels
self.feat_shape = feat_shape
self.ref_feat_shape = ref_feat_shape
if feat_shape is None:
# only cache bands
if in_pixels:
bands = pixel_freq_bands(
dim // 4,
float(max_res),
linear_bands=linear_bands,
)
else:
bands = freq_bands(
dim // 4,
temperature=temperature,
step=1,
)
print(bands)
self.register_buffer(
'bands',
bands,
persistent=False,
)
self.pos_embed_sin = None
self.pos_embed_cos = None
else:
# cache full sin/cos embeddings if shape provided up front
emb_sin, emb_cos = build_rotary_pos_embed(
feat_shape=feat_shape,
dim=dim,
max_res=max_res,
linear_bands=linear_bands,
in_pixels=in_pixels,
ref_feat_shape=self.ref_feat_shape,
)
self.bands = None
self.register_buffer(
'pos_embed_sin',
emb_sin,
persistent=False,
)
self.register_buffer(
'pos_embed_cos',
emb_cos,
persistent=False,
)
def get_embed(self, shape: Optional[List[int]] = None):
if self.bands is not None:
# rebuild embeddings every call, use if target shape changes
assert shape is not None
return build_rotary_pos_embed(
shape,
self.bands,
in_pixels=self.in_pixels,
)
else:
return self.pos_embed_sin, self.pos_embed_cos
def forward(self, x):
# assuming channel-first tensor where spatial dim are >= 2
sin_emb, cos_emb = self.get_embed(x.shape[2:])
return apply_rot_embed(x, sin_emb, cos_emb)
class RotaryEmbeddingCat(nn.Module):
""" Rotary position embedding w/ concatenatd sin & cos
The following impl/resources were referenced for this impl:
* https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
* https://blog.eleuther.ai/rotary-embeddings/
"""
def __init__(
self,
dim,
max_res=224,
temperature=10000,
in_pixels=True,
linear_bands: bool = False,
feat_shape: Optional[List[int]] = None,
ref_feat_shape: Optional[List[int]] = None,
):
super().__init__()
self.dim = dim
self.max_res = max_res
self.temperature = temperature
self.in_pixels = in_pixels
self.feat_shape = feat_shape
self.ref_feat_shape = ref_feat_shape
if feat_shape is None:
# only cache bands
if in_pixels:
bands = pixel_freq_bands(
dim // 4,
float(max_res),
linear_bands=linear_bands,
)
else:
bands = freq_bands(
dim // 4,
temperature=temperature,
step=1,
)
print(bands)
self.register_buffer(
'bands',
bands,
persistent=False,
)
self.embed = None
else:
# cache full sin/cos embeddings if shape provided up front
embeds = build_rotary_pos_embed(
feat_shape=feat_shape,
dim=dim,
max_res=max_res,
linear_bands=linear_bands,
in_pixels=in_pixels,
ref_feat_shape=self.ref_feat_shape,
)
self.bands = None
self.register_buffer(
'pos_embed',
torch.cat(embeds, -1),
persistent=False,
)
def get_embed(self, shape: Optional[List[int]] = None):
if self.bands is not None:
# rebuild embeddings every call, use if target shape changes
_assert(shape is not None, 'valid shape needed')
embeds = build_rotary_pos_embed(
shape,
self.bands,
in_pixels=self.in_pixels,
)
return torch.cat(embeds, -1)
else:
return self.pos_embed
def forward(self, x):
# assuming channel-first tensor where spatial dim are >= 2
pos_embed = self.get_embed(x.shape[2:])
return apply_rot_embed_cat(x, pos_embed)
|