File size: 12,370 Bytes
da716ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import torch
import torch.nn as nn
import torch.nn.functional as F

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.helpers import load_pretrained
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
import torch.utils.checkpoint as checkpoint
import numpy as np
from einops import rearrange
from torch import einsum
from einops._torch_specific import allow_ops_in_compiled_graph  # requires einops>=0.6.1
allow_ops_in_compiled_graph()


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .96, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'classifier': 'head',
        **kwargs
    }


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, overlap=False):
        super().__init__()
        if overlap:
            padding = (patch_size - 1) // 2
            stride = (patch_size + 1) // 2
        else:
            padding = 0
            stride = patch_size
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, padding=padding, stride=stride)

    def forward(self, x):
        x = self.proj(x)  # B, C, H, W
        return x


class Downsample(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, in_embed_dim, out_embed_dim, patch_size, overlap=False):
        super().__init__()
        if overlap:
            assert patch_size==2
            self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=3, padding=1, stride=2)
        else:
            self.proj = nn.Conv2d(in_embed_dim, out_embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        x = x.permute(0, 3, 1, 2)
        x = self.proj(x)  # B, C, H, W
        x = x.permute(0, 2, 3, 1)
        return x
    
    
class Sum(nn.Module):
    def __init__(self, *fns):
        super().__init__()
        assert len(fns) == 3
        self.fns = nn.ModuleList(fns)
    def forward(self, x):
        return self.fns[0](x) + self.fns[1](x) + self.fns[2](x)

    
class MixingAttention(nn.Module):
    def __init__(self, dim, resolution, idx, num_heads=8, split_size=2, dim_out=None, d=2, d_i=32, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.dim = dim
        self.dim_out = dim_out or dim
        self.num_heads = num_heads
        self.resolution = resolution
        self.split_size = split_size
        assert self.resolution % self.split_size == 0
        self.d = d
        if idx == -1:
            H_sp, W_sp = self.resolution, self.resolution
        elif idx == 0:
            H_sp, W_sp = self.resolution, self.split_size
        elif idx == 1:
            W_sp, H_sp = self.resolution, self.split_size
        else:
            print ("ERROR MODE", idx)
            exit(0)
        L = H_sp * W_sp
        self.H_sp = H_sp
        self.W_sp = W_sp
        self.x_windows = self.resolution // H_sp
        self.y_windows = self.resolution // W_sp

        self.proj_in = nn.Linear(dim, num_heads * d)
        self.full = nn.Linear(num_heads * L * d, L * d)
        self.proj_out = nn.Linear(num_heads * d, dim)

    def forward(self, x):
        """
        x: B H W C
        """
        H_sp, W_sp = self.H_sp, self.W_sp
        x = self.proj_in(x)
        x = rearrange(x, "b (n1 h) (n2 w) (m d) -> (b n1 n2) m (h w d)", 
                      n1=self.x_windows, h=H_sp, n2=self.y_windows, w=W_sp, m=self.num_heads)
        w = rearrange(self.full.weight, "d2 (m d1) -> m d2 d1", m=self.num_heads)
        x = einsum("b m d, m f d -> b m f", x, w) + self.full.bias
        x = self.proj_out(rearrange(x, "(b n1 n2) m (h w d) -> b (n1 h) (n2 w) (m d)",
                                    n1=self.x_windows, h=H_sp, n2=self.y_windows, w=W_sp, m=self.num_heads))
        return x


class FullMLPBlock(nn.Module):
    def __init__(self, dim, resolution=32, num_head=8, reduced_dim=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.resolution = resolution
        self.num_head = num_head
        self.mix_h = MixingAttention(dim, resolution, idx=0, split_size=4, num_heads=self.num_head, d=reduced_dim)
        self.mix_w = MixingAttention(dim, resolution, idx=1, split_size=4, num_heads=self.num_head, d=reduced_dim)
        self.mlp_c = nn.Linear(dim, dim, bias=qkv_bias)
        self.reweight = Mlp(dim, dim // 4, dim * 3)

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, H, W, C = x.shape
        h = self.mix_h(x)
        w = self.mix_w(x)
        c = self.mlp_c(x)

        a = (h + w + c).permute(0, 3, 1, 2).flatten(2).mean(2)
        a = self.reweight(a).reshape(B, C, 3).permute(2, 0, 1).softmax(dim=0).unsqueeze(2).unsqueeze(2)

        x = h * a[0] + w * a[1] + c * a[2]

        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class VisionBlock(nn.Module):

    def __init__(self, dim, resolution, num_head, reduced_dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip_lam=1.0, mlp_fn=FullMLPBlock):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = mlp_fn(dim, resolution=resolution, num_head=num_head, reduced_dim=reduced_dim, qkv_bias=qkv_bias, qk_scale=None,
                           attn_drop=attn_drop)

        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
        self.skip_lam = skip_lam

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x))) / self.skip_lam
        x = x + self.drop_path(self.mlp(self.norm2(x))) / self.skip_lam
        return x


def basic_blocks(dim, index, layers, resolution, num_head, reduced_dim, mlp_ratio=3., qkv_bias=False, qk_scale=None, \
                 attn_drop=0, drop_path_rate=0., skip_lam=1.0, mlp_fn=FullMLPBlock, **kwargs):
    blocks = []

    for block_idx in range(layers[index]):
        block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
        blocks.append(VisionBlock(dim, resolution, num_head, reduced_dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, \
                                  attn_drop=attn_drop, drop_path=block_dpr, skip_lam=skip_lam, mlp_fn=mlp_fn))

    blocks = nn.Sequential(*blocks)

    return blocks


class VisionModel(nn.Module):

    def __init__(self, layers, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=None,
                 transitions=None, resolutions=None, num_heads=None, reduced_dims=None, mlp_ratios=None, skip_lam=1.0,
                 qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
                 norm_layer=nn.LayerNorm, mlp_fn=FullMLPBlock, overlap=False, **kwargs):

        super().__init__()
        self.num_classes = num_classes

        self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans,
                                      embed_dim=embed_dims[0], overlap=overlap)

        network = []
        for i in range(len(layers)):
            stage = basic_blocks(embed_dims[i], i, layers, resolutions[i], num_heads[i], reduced_dims[i],
                                 mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop_rate,
                                 drop_path_rate=drop_path_rate, norm_layer=norm_layer, skip_lam=skip_lam, mlp_fn=mlp_fn)
            network.append(stage)
            if i >= len(layers) - 1:
                break
            if transitions[i] or embed_dims[i] != embed_dims[i + 1]:
                patch_size = 2 if transitions[i] else 1
                network.append(Downsample(embed_dims[i], embed_dims[i + 1], patch_size, overlap=overlap))

        self.network = nn.ModuleList(network)

        self.norm = norm_layer(embed_dims[-1])

        # Classifier head
        self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_embeddings(self, x):
        x = self.patch_embed(x)
        # B,C,H,W-> B,H,W,C
        x = x.permute(0, 2, 3, 1)
        return x

    def forward_tokens(self, x):
        for idx, block in enumerate(self.network):
            x = block(x)
        B, H, W, C = x.shape
        x = x.reshape(B, -1, C)
        return x

    def forward(self, x):
        x = self.forward_embeddings(x)
        # B, H, W, C -> B, N, C
        x = self.forward_tokens(x)
        x = self.norm(x)
        return self.head(x.mean(1))
    
    
default_cfgs = {
    'FullMLP_S': _cfg(crop_pct=0.9),
    'FullMLP_M': _cfg(crop_pct=0.9),
    'FullMLP_L': _cfg(crop_pct=0.875),
}


@register_model
def fullmlp_s(pretrained=False, **kwargs):
    layers = [4, 3, 8, 3]
    transitions = [True, False, False, False]
    resolutions = [32, 16, 16, 16]
    num_heads = [8, 16, 16, 16]
    mlp_ratios = [3, 3, 3, 3]
    embed_dims = [192, 384, 384, 384]
    reduced_dims = [2, 2, 2, 2]
    model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                        resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios,
                        mlp_fn=FullMLPBlock, **kwargs)
    model.default_cfg = default_cfgs['FullMLP_S']
    return model


@register_model
def fullmlp_m(pretrained=False, **kwargs):
    layers = [4, 3, 14, 3]
    transitions = [False, True, False, False]
    resolutions = [32, 32, 16, 16]
    num_heads = [8, 8, 16, 16]
    mlp_ratios = [3, 3, 3, 3]
    embed_dims = [256, 256, 512, 512]
    reduced_dims = [2, 2, 2, 2]
    model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                        resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios,
                        mlp_fn=FullMLPBlock, **kwargs)
    model.default_cfg = default_cfgs['FullMLP_M']
    return model


@register_model
def fullmlp_l(pretrained=False, **kwargs):
    layers = [8, 8, 16, 4]
    transitions = [True, False, False, False]
    resolutions = [32, 16, 16, 16]
    num_heads = [8, 16, 16, 16]
    mlp_ratios = [3, 3, 3, 3]
    embed_dims = [256, 512, 512, 512]
    reduced_dims = [8, 8, 8, 8]
    model = VisionModel(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
                        resolutions=resolutions, num_heads=num_heads, reduced_dims=reduced_dims, mlp_ratios=mlp_ratios,
                        mlp_fn=FullMLPBlock, **kwargs)
    model.default_cfg = default_cfgs['FullMLP_L']
    return model