Last commit not found
#!/usr/bin/env python3 | |
"""PyTorch Inference Script | |
An example inference script that outputs top-k class ids for images in a folder into a csv. | |
Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) | |
""" | |
import argparse | |
import json | |
import logging | |
import os | |
import time | |
from contextlib import suppress | |
from functools import partial | |
import numpy as np | |
import pandas as pd | |
import torch | |
from timm.data import create_dataset, create_loader, resolve_data_config, ImageNetInfo, infer_imagenet_subset | |
from timm.layers import apply_test_time_pool | |
from timm.models import create_model | |
from timm.utils import AverageMeter, setup_default_logging, set_jit_fuser, ParseKwargs | |
try: | |
from apex import amp | |
has_apex = True | |
except ImportError: | |
has_apex = False | |
has_native_amp = False | |
try: | |
if getattr(torch.cuda.amp, 'autocast') is not None: | |
has_native_amp = True | |
except AttributeError: | |
pass | |
try: | |
from functorch.compile import memory_efficient_fusion | |
has_functorch = True | |
except ImportError as e: | |
has_functorch = False | |
has_compile = hasattr(torch, 'compile') | |
_FMT_EXT = { | |
'json': '.json', | |
'json-record': '.json', | |
'json-split': '.json', | |
'parquet': '.parquet', | |
'csv': '.csv', | |
} | |
torch.backends.cudnn.benchmark = True | |
_logger = logging.getLogger('inference') | |
parser = argparse.ArgumentParser(description='PyTorch ImageNet Inference') | |
parser.add_argument('data', nargs='?', metavar='DIR', const=None, | |
help='path to dataset (*deprecated*, use --data-dir)') | |
parser.add_argument('--data-dir', metavar='DIR', | |
help='path to dataset (root dir)') | |
parser.add_argument('--dataset', metavar='NAME', default='', | |
help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)') | |
parser.add_argument('--split', metavar='NAME', default='validation', | |
help='dataset split (default: validation)') | |
parser.add_argument('--model', '-m', metavar='MODEL', default='resnet50', | |
help='model architecture (default: resnet50)') | |
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', | |
help='number of data loading workers (default: 2)') | |
parser.add_argument('-b', '--batch-size', default=256, type=int, | |
metavar='N', help='mini-batch size (default: 256)') | |
parser.add_argument('--img-size', default=None, type=int, | |
metavar='N', help='Input image dimension, uses model default if empty') | |
parser.add_argument('--in-chans', type=int, default=None, metavar='N', | |
help='Image input channels (default: None => 3)') | |
parser.add_argument('--input-size', default=None, nargs=3, type=int, | |
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') | |
parser.add_argument('--use-train-size', action='store_true', default=False, | |
help='force use of train input size, even when test size is specified in pretrained cfg') | |
parser.add_argument('--crop-pct', default=None, type=float, | |
metavar='N', help='Input image center crop pct') | |
parser.add_argument('--crop-mode', default=None, type=str, | |
metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') | |
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', | |
help='Override mean pixel value of dataset') | |
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', | |
help='Override std deviation of of dataset') | |
parser.add_argument('--interpolation', default='', type=str, metavar='NAME', | |
help='Image resize interpolation type (overrides model)') | |
parser.add_argument('--num-classes', type=int, default=None, | |
help='Number classes in dataset') | |
parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', | |
help='path to class to idx mapping file (default: "")') | |
parser.add_argument('--log-freq', default=10, type=int, | |
metavar='N', help='batch logging frequency (default: 10)') | |
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', | |
help='path to latest checkpoint (default: none)') | |
parser.add_argument('--pretrained', dest='pretrained', action='store_true', | |
help='use pre-trained model') | |
parser.add_argument('--num-gpu', type=int, default=1, | |
help='Number of GPUS to use') | |
parser.add_argument('--test-pool', dest='test_pool', action='store_true', | |
help='enable test time pool') | |
parser.add_argument('--channels-last', action='store_true', default=False, | |
help='Use channels_last memory layout') | |
parser.add_argument('--device', default='cuda', type=str, | |
help="Device (accelerator) to use.") | |
parser.add_argument('--amp', action='store_true', default=False, | |
help='use Native AMP for mixed precision training') | |
parser.add_argument('--amp-dtype', default='float16', type=str, | |
help='lower precision AMP dtype (default: float16)') | |
parser.add_argument('--fuser', default='', type=str, | |
help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") | |
parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) | |
scripting_group = parser.add_mutually_exclusive_group() | |
scripting_group.add_argument('--torchscript', default=False, action='store_true', | |
help='torch.jit.script the full model') | |
scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', | |
help="Enable compilation w/ specified backend (default: inductor).") | |
scripting_group.add_argument('--aot-autograd', default=False, action='store_true', | |
help="Enable AOT Autograd support.") | |
parser.add_argument('--results-dir', type=str, default=None, | |
help='folder for output results') | |
parser.add_argument('--results-file', type=str, default=None, | |
help='results filename (relative to results-dir)') | |
parser.add_argument('--results-format', type=str, nargs='+', default=['csv'], | |
help='results format (one of "csv", "json", "json-split", "parquet")') | |
parser.add_argument('--results-separate-col', action='store_true', default=False, | |
help='separate output columns per result index.') | |
parser.add_argument('--topk', default=1, type=int, | |
metavar='N', help='Top-k to output to CSV') | |
parser.add_argument('--fullname', action='store_true', default=False, | |
help='use full sample name in output (not just basename).') | |
parser.add_argument('--filename-col', type=str, default='filename', | |
help='name for filename / sample name column') | |
parser.add_argument('--index-col', type=str, default='index', | |
help='name for output indices column(s)') | |
parser.add_argument('--label-col', type=str, default='label', | |
help='name for output indices column(s)') | |
parser.add_argument('--output-col', type=str, default=None, | |
help='name for logit/probs output column(s)') | |
parser.add_argument('--output-type', type=str, default='prob', | |
help='output type colum ("prob" for probabilities, "logit" for raw logits)') | |
parser.add_argument('--label-type', type=str, default='description', | |
help='type of label to output, one of "none", "name", "description", "detailed"') | |
parser.add_argument('--include-index', action='store_true', default=False, | |
help='include the class index in results') | |
parser.add_argument('--exclude-output', action='store_true', default=False, | |
help='exclude logits/probs from results, just indices. topk must be set !=0.') | |
def main(): | |
setup_default_logging() | |
args = parser.parse_args() | |
# might as well try to do something useful... | |
args.pretrained = args.pretrained or not args.checkpoint | |
if torch.cuda.is_available(): | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.benchmark = True | |
device = torch.device(args.device) | |
# resolve AMP arguments based on PyTorch / Apex availability | |
amp_autocast = suppress | |
if args.amp: | |
assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' | |
assert args.amp_dtype in ('float16', 'bfloat16') | |
amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 | |
amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) | |
_logger.info('Running inference in mixed precision with native PyTorch AMP.') | |
else: | |
_logger.info('Running inference in float32. AMP not enabled.') | |
if args.fuser: | |
set_jit_fuser(args.fuser) | |
# create model | |
in_chans = 3 | |
if args.in_chans is not None: | |
in_chans = args.in_chans | |
elif args.input_size is not None: | |
in_chans = args.input_size[0] | |
model = create_model( | |
args.model, | |
num_classes=args.num_classes, | |
in_chans=in_chans, | |
pretrained=args.pretrained, | |
checkpoint_path=args.checkpoint, | |
**args.model_kwargs, | |
) | |
if args.num_classes is None: | |
assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' | |
args.num_classes = model.num_classes | |
_logger.info( | |
f'Model {args.model} created, param count: {sum([m.numel() for m in model.parameters()])}') | |
data_config = resolve_data_config(vars(args), model=model) | |
test_time_pool = False | |
if args.test_pool: | |
model, test_time_pool = apply_test_time_pool(model, data_config) | |
model = model.to(device) | |
model.eval() | |
if args.channels_last: | |
model = model.to(memory_format=torch.channels_last) | |
if args.torchscript: | |
model = torch.jit.script(model) | |
elif args.torchcompile: | |
assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' | |
torch._dynamo.reset() | |
model = torch.compile(model, backend=args.torchcompile) | |
elif args.aot_autograd: | |
assert has_functorch, "functorch is needed for --aot-autograd" | |
model = memory_efficient_fusion(model) | |
if args.num_gpu > 1: | |
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) | |
root_dir = args.data or args.data_dir | |
dataset = create_dataset( | |
root=root_dir, | |
name=args.dataset, | |
split=args.split, | |
class_map=args.class_map, | |
) | |
if test_time_pool: | |
data_config['crop_pct'] = 1.0 | |
workers = 1 if 'tfds' in args.dataset or 'wds' in args.dataset else args.workers | |
loader = create_loader( | |
dataset, | |
batch_size=args.batch_size, | |
use_prefetcher=True, | |
num_workers=workers, | |
**data_config, | |
) | |
to_label = None | |
if args.label_type in ('name', 'description', 'detail'): | |
imagenet_subset = infer_imagenet_subset(model) | |
if imagenet_subset is not None: | |
dataset_info = ImageNetInfo(imagenet_subset) | |
if args.label_type == 'name': | |
to_label = lambda x: dataset_info.index_to_label_name(x) | |
elif args.label_type == 'detail': | |
to_label = lambda x: dataset_info.index_to_description(x, detailed=True) | |
else: | |
to_label = lambda x: dataset_info.index_to_description(x) | |
to_label = np.vectorize(to_label) | |
else: | |
_logger.error("Cannot deduce ImageNet subset from model, no labelling will be performed.") | |
top_k = min(args.topk, args.num_classes) | |
batch_time = AverageMeter() | |
end = time.time() | |
all_indices = [] | |
all_labels = [] | |
all_outputs = [] | |
use_probs = args.output_type == 'prob' | |
with torch.no_grad(): | |
for batch_idx, (input, _) in enumerate(loader): | |
with amp_autocast(): | |
output = model(input) | |
if use_probs: | |
output = output.softmax(-1) | |
if top_k: | |
output, indices = output.topk(top_k) | |
np_indices = indices.cpu().numpy() | |
if args.include_index: | |
all_indices.append(np_indices) | |
if to_label is not None: | |
np_labels = to_label(np_indices) | |
all_labels.append(np_labels) | |
all_outputs.append(output.cpu().numpy()) | |
# measure elapsed time | |
batch_time.update(time.time() - end) | |
end = time.time() | |
if batch_idx % args.log_freq == 0: | |
_logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format( | |
batch_idx, len(loader), batch_time=batch_time)) | |
all_indices = np.concatenate(all_indices, axis=0) if all_indices else None | |
all_labels = np.concatenate(all_labels, axis=0) if all_labels else None | |
all_outputs = np.concatenate(all_outputs, axis=0).astype(np.float32) | |
filenames = loader.dataset.filenames(basename=not args.fullname) | |
output_col = args.output_col or ('prob' if use_probs else 'logit') | |
data_dict = {args.filename_col: filenames} | |
if args.results_separate_col and all_outputs.shape[-1] > 1: | |
if all_indices is not None: | |
for i in range(all_indices.shape[-1]): | |
data_dict[f'{args.index_col}_{i}'] = all_indices[:, i] | |
if all_labels is not None: | |
for i in range(all_labels.shape[-1]): | |
data_dict[f'{args.label_col}_{i}'] = all_labels[:, i] | |
for i in range(all_outputs.shape[-1]): | |
data_dict[f'{output_col}_{i}'] = all_outputs[:, i] | |
else: | |
if all_indices is not None: | |
if all_indices.shape[-1] == 1: | |
all_indices = all_indices.squeeze(-1) | |
data_dict[args.index_col] = list(all_indices) | |
if all_labels is not None: | |
if all_labels.shape[-1] == 1: | |
all_labels = all_labels.squeeze(-1) | |
data_dict[args.label_col] = list(all_labels) | |
if all_outputs.shape[-1] == 1: | |
all_outputs = all_outputs.squeeze(-1) | |
data_dict[output_col] = list(all_outputs) | |
df = pd.DataFrame(data=data_dict) | |
results_filename = args.results_file | |
if results_filename: | |
filename_no_ext, ext = os.path.splitext(results_filename) | |
if ext and ext in _FMT_EXT.values(): | |
# if filename provided with one of expected ext, | |
# remove it as it will be added back | |
results_filename = filename_no_ext | |
else: | |
# base default filename on model name + img-size | |
img_size = data_config["input_size"][1] | |
results_filename = f'{args.model}-{img_size}' | |
if args.results_dir: | |
results_filename = os.path.join(args.results_dir, results_filename) | |
for fmt in args.results_format: | |
save_results(df, results_filename, fmt) | |
print(f'--result') | |
print(df.set_index(args.filename_col).to_json(orient='index', indent=4)) | |
def save_results(df, results_filename, results_format='csv', filename_col='filename'): | |
results_filename += _FMT_EXT[results_format] | |
if results_format == 'parquet': | |
df.set_index(filename_col).to_parquet(results_filename) | |
elif results_format == 'json': | |
df.set_index(filename_col).to_json(results_filename, indent=4, orient='index') | |
elif results_format == 'json-records': | |
df.to_json(results_filename, lines=True, orient='records') | |
elif results_format == 'json-split': | |
df.to_json(results_filename, indent=4, orient='split', index=False) | |
else: | |
df.to_csv(results_filename, index=False) | |
if __name__ == '__main__': | |
main() | |