|
""" Relative position embedding modules and functions |
|
|
|
Hacked together by / Copyright 2022 Ross Wightman |
|
""" |
|
import math |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .mlp import Mlp |
|
from .weight_init import trunc_normal_ |
|
|
|
|
|
def gen_relative_position_index( |
|
q_size: Tuple[int, int], |
|
k_size: Optional[Tuple[int, int]] = None, |
|
class_token: bool = False, |
|
) -> torch.Tensor: |
|
|
|
|
|
if k_size is None: |
|
coords = torch.stack( |
|
torch.meshgrid([ |
|
torch.arange(q_size[0]), |
|
torch.arange(q_size[1]) |
|
]) |
|
).flatten(1) |
|
relative_coords = coords[:, :, None] - coords[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0) |
|
num_relative_distance = (2 * q_size[0] - 1) * (2 * q_size[1] - 1) + 3 |
|
else: |
|
|
|
q_coords = torch.stack( |
|
torch.meshgrid([ |
|
torch.arange(q_size[0]), |
|
torch.arange(q_size[1]) |
|
]) |
|
).flatten(1) |
|
k_coords = torch.stack( |
|
torch.meshgrid([ |
|
torch.arange(k_size[0]), |
|
torch.arange(k_size[1]) |
|
]) |
|
).flatten(1) |
|
relative_coords = q_coords[:, :, None] - k_coords[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0) |
|
|
|
|
|
|
|
|
|
num_relative_distance = (q_size[0] + k_size[0] - 1) * (q_size[1] + q_size[1] - 1) + 3 |
|
|
|
_, relative_position_index = torch.unique(relative_coords.view(-1, 2), return_inverse=True, dim=0) |
|
|
|
if class_token: |
|
|
|
|
|
relative_position_index = F.pad(relative_position_index, [1, 0, 1, 0]) |
|
relative_position_index[0, 0:] = num_relative_distance - 3 |
|
relative_position_index[0:, 0] = num_relative_distance - 2 |
|
relative_position_index[0, 0] = num_relative_distance - 1 |
|
|
|
return relative_position_index.contiguous() |
|
|
|
|
|
class RelPosBias(nn.Module): |
|
""" Relative Position Bias |
|
Adapted from Swin-V1 relative position bias impl, modularized. |
|
""" |
|
|
|
def __init__(self, window_size, num_heads, prefix_tokens=0): |
|
super().__init__() |
|
assert prefix_tokens <= 1 |
|
self.window_size = window_size |
|
self.window_area = window_size[0] * window_size[1] |
|
self.bias_shape = (self.window_area + prefix_tokens,) * 2 + (num_heads,) |
|
|
|
num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 * prefix_tokens |
|
self.relative_position_bias_table = nn.Parameter(torch.zeros(num_relative_distance, num_heads)) |
|
self.register_buffer( |
|
"relative_position_index", |
|
gen_relative_position_index(self.window_size, class_token=prefix_tokens > 0).view(-1), |
|
persistent=False, |
|
) |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
|
|
def get_bias(self) -> torch.Tensor: |
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index] |
|
|
|
relative_position_bias = relative_position_bias.view(self.bias_shape).permute(2, 0, 1) |
|
return relative_position_bias.unsqueeze(0).contiguous() |
|
|
|
def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): |
|
return attn + self.get_bias() |
|
|
|
|
|
def gen_relative_log_coords( |
|
win_size: Tuple[int, int], |
|
pretrained_win_size: Tuple[int, int] = (0, 0), |
|
mode='swin', |
|
): |
|
assert mode in ('swin', 'cr') |
|
|
|
relative_coords_h = torch.arange(-(win_size[0] - 1), win_size[0], dtype=torch.float32) |
|
relative_coords_w = torch.arange(-(win_size[1] - 1), win_size[1], dtype=torch.float32) |
|
relative_coords_table = torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w])) |
|
relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous() |
|
if mode == 'swin': |
|
if pretrained_win_size[0] > 0: |
|
relative_coords_table[:, :, 0] /= (pretrained_win_size[0] - 1) |
|
relative_coords_table[:, :, 1] /= (pretrained_win_size[1] - 1) |
|
else: |
|
relative_coords_table[:, :, 0] /= (win_size[0] - 1) |
|
relative_coords_table[:, :, 1] /= (win_size[1] - 1) |
|
relative_coords_table *= 8 |
|
relative_coords_table = torch.sign(relative_coords_table) * torch.log2( |
|
1.0 + relative_coords_table.abs()) / math.log2(8) |
|
else: |
|
|
|
relative_coords_table = torch.sign(relative_coords_table) * torch.log( |
|
1.0 + relative_coords_table.abs()) |
|
|
|
return relative_coords_table |
|
|
|
|
|
class RelPosMlp(nn.Module): |
|
""" Log-Coordinate Relative Position MLP |
|
Based on ideas presented in Swin-V2 paper (https://arxiv.org/abs/2111.09883) |
|
|
|
This impl covers the 'swin' implementation as well as two timm specific modes ('cr', and 'rw') |
|
""" |
|
def __init__( |
|
self, |
|
window_size, |
|
num_heads=8, |
|
hidden_dim=128, |
|
prefix_tokens=0, |
|
mode='cr', |
|
pretrained_window_size=(0, 0) |
|
): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.window_area = self.window_size[0] * self.window_size[1] |
|
self.prefix_tokens = prefix_tokens |
|
self.num_heads = num_heads |
|
self.bias_shape = (self.window_area,) * 2 + (num_heads,) |
|
if mode == 'swin': |
|
self.bias_act = nn.Sigmoid() |
|
self.bias_gain = 16 |
|
mlp_bias = (True, False) |
|
else: |
|
self.bias_act = nn.Identity() |
|
self.bias_gain = None |
|
mlp_bias = True |
|
|
|
self.mlp = Mlp( |
|
2, |
|
hidden_features=hidden_dim, |
|
out_features=num_heads, |
|
act_layer=nn.ReLU, |
|
bias=mlp_bias, |
|
drop=(0.125, 0.) |
|
) |
|
|
|
self.register_buffer( |
|
"relative_position_index", |
|
gen_relative_position_index(window_size).view(-1), |
|
persistent=False) |
|
|
|
|
|
self.register_buffer( |
|
"rel_coords_log", |
|
gen_relative_log_coords(window_size, pretrained_window_size, mode=mode), |
|
persistent=False) |
|
|
|
def get_bias(self) -> torch.Tensor: |
|
relative_position_bias = self.mlp(self.rel_coords_log) |
|
if self.relative_position_index is not None: |
|
relative_position_bias = relative_position_bias.view(-1, self.num_heads)[self.relative_position_index] |
|
relative_position_bias = relative_position_bias.view(self.bias_shape) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1) |
|
relative_position_bias = self.bias_act(relative_position_bias) |
|
if self.bias_gain is not None: |
|
relative_position_bias = self.bias_gain * relative_position_bias |
|
if self.prefix_tokens: |
|
relative_position_bias = F.pad(relative_position_bias, [self.prefix_tokens, 0, self.prefix_tokens, 0]) |
|
return relative_position_bias.unsqueeze(0).contiguous() |
|
|
|
def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): |
|
return attn + self.get_bias() |
|
|
|
|
|
def generate_lookup_tensor( |
|
length: int, |
|
max_relative_position: Optional[int] = None, |
|
): |
|
"""Generate a one_hot lookup tensor to reindex embeddings along one dimension. |
|
|
|
Args: |
|
length: the length to reindex to. |
|
max_relative_position: the maximum relative position to consider. |
|
Relative position embeddings for distances above this threshold |
|
are zeroed out. |
|
Returns: |
|
a lookup Tensor of size [length, length, vocab_size] that satisfies |
|
ret[n,m,v] = 1{m - n + max_relative_position = v}. |
|
""" |
|
if max_relative_position is None: |
|
max_relative_position = length - 1 |
|
|
|
vocab_size = 2 * max_relative_position + 1 |
|
ret = torch.zeros(length, length, vocab_size) |
|
for i in range(length): |
|
for x in range(length): |
|
v = x - i + max_relative_position |
|
if abs(x - i) > max_relative_position: |
|
continue |
|
ret[i, x, v] = 1 |
|
return ret |
|
|
|
|
|
def reindex_2d_einsum_lookup( |
|
relative_position_tensor, |
|
height: int, |
|
width: int, |
|
height_lookup: torch.Tensor, |
|
width_lookup: torch.Tensor, |
|
) -> torch.Tensor: |
|
"""Reindex 2d relative position bias with 2 independent einsum lookups. |
|
|
|
Adapted from: |
|
https://github.com/google-research/maxvit/blob/2e06a7f1f70c76e64cd3dabe5cd1b8c1a23c9fb7/maxvit/models/attention_utils.py |
|
|
|
Args: |
|
relative_position_tensor: tensor of shape |
|
[..., vocab_height, vocab_width, ...]. |
|
height: height to reindex to. |
|
width: width to reindex to. |
|
height_lookup: one-hot height lookup |
|
width_lookup: one-hot width lookup |
|
Returns: |
|
reindexed_tensor: a Tensor of shape |
|
[..., height * width, height * width, ...] |
|
""" |
|
reindexed_tensor = torch.einsum('nhw,ixh->nixw', relative_position_tensor, height_lookup) |
|
reindexed_tensor = torch.einsum('nixw,jyw->nijxy', reindexed_tensor, width_lookup) |
|
area = height * width |
|
return reindexed_tensor.reshape(relative_position_tensor.shape[0], area, area) |
|
|
|
|
|
class RelPosBiasTf(nn.Module): |
|
""" Relative Position Bias Impl (Compatible with Tensorflow MaxViT models) |
|
Adapted from: |
|
https://github.com/google-research/maxvit/blob/2e06a7f1f70c76e64cd3dabe5cd1b8c1a23c9fb7/maxvit/models/attention_utils.py |
|
""" |
|
def __init__(self, window_size, num_heads, prefix_tokens=0): |
|
super().__init__() |
|
assert prefix_tokens <= 1 |
|
self.window_size = window_size |
|
self.window_area = window_size[0] * window_size[1] |
|
self.num_heads = num_heads |
|
|
|
vocab_height = 2 * window_size[0] - 1 |
|
vocab_width = 2 * window_size[1] - 1 |
|
self.bias_shape = (self.num_heads, vocab_height, vocab_width) |
|
self.relative_position_bias_table = nn.Parameter(torch.zeros(self.bias_shape)) |
|
self.register_buffer('height_lookup', generate_lookup_tensor(window_size[0]), persistent=False) |
|
self.register_buffer('width_lookup', generate_lookup_tensor(window_size[1]), persistent=False) |
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
nn.init.normal_(self.relative_position_bias_table, std=.02) |
|
|
|
def get_bias(self) -> torch.Tensor: |
|
|
|
return reindex_2d_einsum_lookup( |
|
self.relative_position_bias_table, |
|
self.window_size[0], |
|
self.window_size[1], |
|
self.height_lookup, |
|
self.width_lookup |
|
) |
|
|
|
def forward(self, attn, shared_rel_pos: Optional[torch.Tensor] = None): |
|
return attn + self.get_bias() |
|
|