|
import numpy as np |
|
import torch |
|
import torchvision |
|
|
|
|
|
class ClassifierOutputTarget: |
|
def __init__(self, category): |
|
self.category = category |
|
|
|
def __call__(self, model_output): |
|
if len(model_output.shape) == 1: |
|
return model_output[self.category] |
|
return model_output[:, self.category] |
|
|
|
|
|
class ClassifierOutputSoftmaxTarget: |
|
def __init__(self, category): |
|
self.category = category |
|
|
|
def __call__(self, model_output): |
|
if len(model_output.shape) == 1: |
|
return torch.softmax(model_output, dim=-1)[self.category] |
|
return torch.softmax(model_output, dim=-1)[:, self.category] |
|
|
|
|
|
class BinaryClassifierOutputTarget: |
|
def __init__(self, category): |
|
self.category = category |
|
|
|
def __call__(self, model_output): |
|
if self.category == 1: |
|
sign = 1 |
|
else: |
|
sign = -1 |
|
return torch.abs(model_output) * sign |
|
|
|
|
|
class SoftmaxOutputTarget: |
|
def __init__(self): |
|
pass |
|
|
|
def __call__(self, model_output): |
|
return torch.softmax(model_output, dim=-1) |
|
|
|
|
|
class RawScoresOutputTarget: |
|
def __init__(self): |
|
pass |
|
|
|
def __call__(self, model_output): |
|
return model_output |
|
|
|
|
|
class SemanticSegmentationTarget: |
|
""" Gets a binary spatial mask and a category, |
|
And return the sum of the category scores, |
|
of the pixels in the mask. """ |
|
|
|
def __init__(self, category, mask): |
|
self.category = category |
|
self.mask = torch.from_numpy(mask) |
|
if torch.cuda.is_available(): |
|
self.mask = self.mask.cuda() |
|
|
|
def __call__(self, model_output): |
|
return (model_output[self.category, :, :] * self.mask).sum() |
|
|
|
|
|
class FasterRCNNBoxScoreTarget: |
|
""" For every original detected bounding box specified in "bounding boxes", |
|
assign a score on how the current bounding boxes match it, |
|
1. In IOU |
|
2. In the classification score. |
|
If there is not a large enough overlap, or the category changed, |
|
assign a score of 0. |
|
|
|
The total score is the sum of all the box scores. |
|
""" |
|
|
|
def __init__(self, labels, bounding_boxes, iou_threshold=0.5): |
|
self.labels = labels |
|
self.bounding_boxes = bounding_boxes |
|
self.iou_threshold = iou_threshold |
|
|
|
def __call__(self, model_outputs): |
|
output = torch.Tensor([0]) |
|
if torch.cuda.is_available(): |
|
output = output.cuda() |
|
|
|
if len(model_outputs["boxes"]) == 0: |
|
return output |
|
|
|
for box, label in zip(self.bounding_boxes, self.labels): |
|
box = torch.Tensor(box[None, :]) |
|
if torch.cuda.is_available(): |
|
box = box.cuda() |
|
|
|
ious = torchvision.ops.box_iou(box, model_outputs["boxes"]) |
|
index = ious.argmax() |
|
if ious[0, index] > self.iou_threshold and model_outputs["labels"][index] == label: |
|
score = ious[0, index] + model_outputs["scores"][index] |
|
output = output + score |
|
return output |
|
|