|
""" Depthwise Separable Conv Modules |
|
|
|
Basic DWS convs. Other variations of DWS exist with batch norm or activations between the |
|
DW and PW convs such as the Depthwise modules in MobileNetV2 / EfficientNet and Xception. |
|
|
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
from torch import nn as nn |
|
|
|
from .create_conv2d import create_conv2d |
|
from .create_norm_act import get_norm_act_layer |
|
|
|
|
|
class SeparableConvNormAct(nn.Module): |
|
""" Separable Conv w/ trailing Norm and Activation |
|
""" |
|
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False, |
|
channel_multiplier=1.0, pw_kernel_size=1, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, |
|
apply_act=True, drop_layer=None): |
|
super(SeparableConvNormAct, self).__init__() |
|
|
|
self.conv_dw = create_conv2d( |
|
in_channels, int(in_channels * channel_multiplier), kernel_size, |
|
stride=stride, dilation=dilation, padding=padding, depthwise=True) |
|
|
|
self.conv_pw = create_conv2d( |
|
int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias) |
|
|
|
norm_act_layer = get_norm_act_layer(norm_layer, act_layer) |
|
norm_kwargs = dict(drop_layer=drop_layer) if drop_layer is not None else {} |
|
self.bn = norm_act_layer(out_channels, apply_act=apply_act, **norm_kwargs) |
|
|
|
@property |
|
def in_channels(self): |
|
return self.conv_dw.in_channels |
|
|
|
@property |
|
def out_channels(self): |
|
return self.conv_pw.out_channels |
|
|
|
def forward(self, x): |
|
x = self.conv_dw(x) |
|
x = self.conv_pw(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
SeparableConvBnAct = SeparableConvNormAct |
|
|
|
|
|
class SeparableConv2d(nn.Module): |
|
""" Separable Conv |
|
""" |
|
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, padding='', bias=False, |
|
channel_multiplier=1.0, pw_kernel_size=1): |
|
super(SeparableConv2d, self).__init__() |
|
|
|
self.conv_dw = create_conv2d( |
|
in_channels, int(in_channels * channel_multiplier), kernel_size, |
|
stride=stride, dilation=dilation, padding=padding, depthwise=True) |
|
|
|
self.conv_pw = create_conv2d( |
|
int(in_channels * channel_multiplier), out_channels, pw_kernel_size, padding=padding, bias=bias) |
|
|
|
@property |
|
def in_channels(self): |
|
return self.conv_dw.in_channels |
|
|
|
@property |
|
def out_channels(self): |
|
return self.conv_pw.out_channels |
|
|
|
def forward(self, x): |
|
x = self.conv_dw(x) |
|
x = self.conv_pw(x) |
|
return x |
|
|