#!/usr/bin/env python3 """ ImageNet Validation Script This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained models or training checkpoints against ImageNet or similarly organized image datasets. It prioritizes canonical PyTorch, standard Python style, and good performance. Repurpose as you see fit. Hacked together by Ross Wightman (https://github.com/rwightman) """ import argparse import csv import glob import json import logging import os import time from collections import OrderedDict from contextlib import suppress from functools import partial import torch import torch.nn as nn import torch.nn.parallel from timm.data import create_dataset, create_loader, resolve_data_config, RealLabelsImagenet from timm.layers import apply_test_time_pool, set_fast_norm from timm.models import create_model, load_checkpoint, is_model, list_models from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_fuser, \ decay_batch_step, check_batch_size_retry, ParseKwargs from datasets import Dataset, concatenate_datasets try: from apex import amp has_apex = True except ImportError: has_apex = False has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: from functorch.compile import memory_efficient_fusion has_functorch = True except ImportError as e: has_functorch = False has_compile = hasattr(torch, 'compile') _logger = logging.getLogger('validate') parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') parser.add_argument('data', nargs='?', metavar='DIR', const=None, help='path to dataset (*deprecated*, use --data-dir)') parser.add_argument('--data-dir', metavar='DIR', default="", help='path to dataset (root dir)') parser.add_argument('--dataset', metavar='NAME', default='', help='dataset type + name ("/") (default: ImageFolder or ImageTar if empty)') parser.add_argument('--split', metavar='NAME', default='validation', help='dataset split (default: validation)') parser.add_argument('--dataset-download', action='store_true', default=False, help='Allow download of dataset for torch/ and tfds/ datasets that support it.') parser.add_argument('--model', '-m', metavar='NAME', default='dpn92', help='model architecture (default: dpn92)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('-b', '--batch-size', default=512, type=int, metavar='N', help='mini-batch size (default: 512)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--in-chans', type=int, default=None, metavar='N', help='Image input channels (default: None => 3)') parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') parser.add_argument('--use-train-size', action='store_true', default=False, help='force use of train input size, even when test size is specified in pretrained cfg') parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop pct') parser.add_argument('--crop-mode', default=None, type=str, metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') parser.add_argument('--log-freq', default=10, type=int, metavar='N', help='batch logging frequency (default: 10)') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') parser.add_argument('--test-pool', dest='test_pool', action='store_true', help='enable test time pool') parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--device', default='cuda', type=str, help="Device (accelerator) to use.") parser.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16)') parser.add_argument('--amp-impl', default='native', type=str, help='AMP impl to use, "native" or "apex" (default: native)') parser.add_argument('--tf-preprocessing', action='store_true', default=False, help='Use Tensorflow preprocessing pipeline (require CPU TF installed') parser.add_argument('--use-ema', dest='use_ema', action='store_true', help='use ema version of weights if present') parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") parser.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) scripting_group = parser.add_mutually_exclusive_group() scripting_group.add_argument('--torchscript', default=False, action='store_true', help='torch.jit.script the full model') scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help="Enable compilation w/ specified backend (default: inductor).") scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help="Enable AOT Autograd support.") parser.add_argument('--results-file', default='', type=str, metavar='FILENAME', help='Output csv file for validation results (summary)') parser.add_argument('--results-format', default='csv', type=str, help='Format for results file one of (csv, json) (default: csv).') parser.add_argument('--real-labels', default='', type=str, metavar='FILENAME', help='Real labels JSON file for imagenet evaluation') parser.add_argument('--valid-labels', default='', type=str, metavar='FILENAME', help='Valid label indices txt file for validation of partial label space') parser.add_argument('--retry', default=False, action='store_true', help='Enable batch size decay & retry for single model validation') def validate(args): # might as well try to validate something args.pretrained = args.pretrained or not args.checkpoint args.prefetcher = not args.no_prefetcher if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True device = torch.device(args.device) # resolve AMP arguments based on PyTorch / Apex availability use_amp = None amp_autocast = suppress if args.amp: if args.amp_impl == 'apex': assert has_apex, 'AMP impl specified as APEX but APEX is not installed.' assert args.amp_dtype == 'float16' use_amp = 'apex' _logger.info('Validating in mixed precision with NVIDIA APEX AMP.') else: assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' assert args.amp_dtype in ('float16', 'bfloat16') use_amp = 'native' amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) _logger.info('Validating in mixed precision with native PyTorch AMP.') else: _logger.info('Validating in float32. AMP not enabled.') if args.fuser: set_jit_fuser(args.fuser) if args.fast_norm: set_fast_norm() # create model in_chans = 3 if args.in_chans is not None: in_chans = args.in_chans elif args.input_size is not None: in_chans = args.input_size[0] model = create_model( args.model, pretrained=args.pretrained, num_classes=args.num_classes, in_chans=in_chans, global_pool=args.gp, scriptable=args.torchscript, **args.model_kwargs, ) if args.num_classes is None: assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' args.num_classes = model.num_classes if args.checkpoint: load_checkpoint(model, args.checkpoint, args.use_ema) param_count = sum([m.numel() for m in model.parameters()]) _logger.info('Model %s created, param count: %d' % (args.model, param_count)) data_config = resolve_data_config( vars(args), model=model, use_test_size=not args.use_train_size, verbose=True, ) test_time_pool = False if args.test_pool: model, test_time_pool = apply_test_time_pool(model, data_config) model = model.to(device) if args.channels_last: model = model.to(memory_format=torch.channels_last) if args.torchscript: assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' model = torch.jit.script(model) elif args.torchcompile: assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' torch._dynamo.reset() model = torch.compile(model, backend=args.torchcompile) elif args.aot_autograd: assert has_functorch, "functorch is needed for --aot-autograd" model = memory_efficient_fusion(model) if use_amp == 'apex': model = amp.initialize(model, opt_level='O1') if args.num_gpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) criterion = nn.CrossEntropyLoss().to(device) root_dir = args.data or args.data_dir # dataset = create_dataset( # root=root_dir, # name=args.dataset, # split=args.split, # download=args.dataset_download, # load_bytes=args.tf_preprocessing, # class_map=args.class_map, # ) dataset = concatenate_datasets([Dataset.from_file(f"../../imagenet-1k/imagenet-1k-validation-{i:05d}-of-00013.arrow",) for i in range(13)]) if args.valid_labels: with open(args.valid_labels, 'r') as f: valid_labels = [int(line.rstrip()) for line in f] else: valid_labels = None if args.real_labels: real_labels = RealLabelsImagenet(dataset.filenames(basename=True), real_json=args.real_labels) else: real_labels = None crop_pct = 1.0 if test_time_pool else data_config['crop_pct'] loader = create_loader( dataset, input_size=data_config['input_size'], batch_size=args.batch_size, use_prefetcher=args.prefetcher, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=crop_pct, crop_mode=data_config['crop_mode'], pin_memory=args.pin_mem, device=device, tf_preprocessing=args.tf_preprocessing, ) batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() model.eval() with torch.no_grad(): # warmup, reduce variability of first batch time, especially for comparing torchscript vs non input = torch.randn((args.batch_size,) + tuple(data_config['input_size'])).to(device) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): model(input) end = time.time() for batch_idx, (input, target) in enumerate(loader): if args.no_prefetcher: target = target.to(device) input = input.to(device) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) # compute output with amp_autocast(): output = model(input) if valid_labels is not None: output = output[:, valid_labels] loss = criterion(output, target) if real_labels is not None: real_labels.add_result(output) # measure accuracy and record loss acc1, acc5 = accuracy(output.detach(), target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(acc1.item(), input.size(0)) top5.update(acc5.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if batch_idx % args.log_freq == 0: _logger.info( 'Test: [{0:>4d}/{1}] ' 'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) ' 'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) ' 'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format( batch_idx, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg, loss=losses, top1=top1, top5=top5 ) ) if real_labels is not None: # real labels mode replaces topk values at the end top1a, top5a = real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5) else: top1a, top5a = top1.avg, top5.avg results = OrderedDict( model=args.model, top1=round(top1a, 4), top1_err=round(100 - top1a, 4), top5=round(top5a, 4), top5_err=round(100 - top5a, 4), param_count=round(param_count / 1e6, 2), img_size=data_config['input_size'][-1], crop_pct=crop_pct, interpolation=data_config['interpolation'], ) _logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format( results['top1'], results['top1_err'], results['top5'], results['top5_err'])) return results def _try_run(args, initial_batch_size): batch_size = initial_batch_size results = OrderedDict() error_str = 'Unknown' while batch_size: args.batch_size = batch_size * args.num_gpu # multiply by num-gpu for DataParallel case try: if torch.cuda.is_available() and 'cuda' in args.device: torch.cuda.empty_cache() results = validate(args) return results except RuntimeError as e: error_str = str(e) _logger.error(f'"{error_str}" while running validation.') if not check_batch_size_retry(error_str): break batch_size = decay_batch_step(batch_size) _logger.warning(f'Reducing batch size to {batch_size} for retry.') results['error'] = error_str _logger.error(f'{args.model} failed to validate ({error_str}).') return results _NON_IN1K_FILTERS = ['*_in21k', '*_in22k', '*in12k', '*_dino', '*fcmae', '*seer'] def main(): setup_default_logging() args = parser.parse_args() model_cfgs = [] model_names = [] if os.path.isdir(args.checkpoint): # validate all checkpoints in a path with same model checkpoints = glob.glob(args.checkpoint + '/*.pth.tar') checkpoints += glob.glob(args.checkpoint + '/*.pth') model_names = list_models(args.model) model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)] else: if args.model == 'all': # validate all models in a list of names with pretrained checkpoints args.pretrained = True model_names = list_models( pretrained=True, exclude_filters=_NON_IN1K_FILTERS, ) model_cfgs = [(n, '') for n in model_names] elif not is_model(args.model): # model name doesn't exist, try as wildcard filter model_names = list_models( args.model, pretrained=True, ) model_cfgs = [(n, '') for n in model_names] if not model_cfgs and os.path.isfile(args.model): with open(args.model) as f: model_names = [line.rstrip() for line in f] model_cfgs = [(n, None) for n in model_names if n] if len(model_cfgs): _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) results = [] try: initial_batch_size = args.batch_size for m, c in model_cfgs: args.model = m args.checkpoint = c r = _try_run(args, initial_batch_size) if 'error' in r: continue if args.checkpoint: r['checkpoint'] = args.checkpoint results.append(r) except KeyboardInterrupt as e: pass results = sorted(results, key=lambda x: x['top1'], reverse=True) else: if args.retry: results = _try_run(args, args.batch_size) else: results = validate(args) if args.results_file: write_results(args.results_file, results, format=args.results_format) # output results in JSON to stdout w/ delimiter for runner script print(f'--result\n{json.dumps(results, indent=4)}') def write_results(results_file, results, format='csv'): with open(results_file, mode='w') as cf: if format == 'json': json.dump(results, cf, indent=4) else: if not isinstance(results, (list, tuple)): results = [results] if not results: return dw = csv.DictWriter(cf, fieldnames=results[0].keys()) dw.writeheader() for r in results: dw.writerow(r) cf.flush() if __name__ == '__main__': main()