|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
model_name = "crystal99/my-fine-tuned-model" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
def generate_text(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return generated_text |
|
|
|
|
|
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Text Generator using Fine-Tuned Model") |
|
|
|
|
|
iface.launch() |
|
|