|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner |
|
from torch import nn |
|
|
|
import tensorrt_llm |
|
from tensorrt_llm import Module, Tensor |
|
|
|
|
|
class TorchMLP(nn.Module): |
|
|
|
def __init__(self, hidden_size, ffn_hidden_size, bias=True): |
|
super().__init__() |
|
self.fc = nn.Linear(hidden_size, ffn_hidden_size, bias=bias) |
|
self.proj = nn.Linear(ffn_hidden_size, hidden_size, bias=bias) |
|
|
|
def forward(self, hidden_states): |
|
inter = self.fc(hidden_states) |
|
inter = nn.functional.relu(inter) |
|
output = self.proj(inter) |
|
return output, inter |
|
|
|
|
|
class MLP(Module): |
|
|
|
def __init__(self, |
|
hidden_size, |
|
ffn_hidden_size, |
|
bias=True, |
|
tp_group=None, |
|
tp_size=1): |
|
super().__init__() |
|
self.fc = tensorrt_llm.layers.ColumnLinear(hidden_size, |
|
ffn_hidden_size, |
|
bias=bias, |
|
tp_group=tp_group, |
|
tp_size=tp_size, |
|
gather_output=False) |
|
self.proj = tensorrt_llm.layers.RowLinear(ffn_hidden_size, |
|
hidden_size, |
|
bias=bias, |
|
tp_group=tp_group, |
|
tp_size=tp_size) |
|
|
|
def forward(self, hidden_states): |
|
inter = self.fc(hidden_states) |
|
inter = tensorrt_llm.functional.relu(inter) |
|
self.register_network_output('inter', inter) |
|
output = self.proj(inter) |
|
return output |
|
|
|
|
|
class TestDebuggingAPI(unittest.TestCase): |
|
|
|
def setUp(self): |
|
tensorrt_llm.logger.set_level('error') |
|
|
|
def test_debugging_api(self): |
|
|
|
dtype = 'float32' |
|
hidden_size = 768 |
|
x_data = torch.randn(2, 16, hidden_size) |
|
|
|
tm = TorchMLP(hidden_size=hidden_size, |
|
ffn_hidden_size=hidden_size * 4, |
|
bias=False) |
|
|
|
|
|
builder = tensorrt_llm.Builder() |
|
net = builder.create_network() |
|
with tensorrt_llm.net_guard(net): |
|
x = Tensor(name='x', |
|
shape=x_data.shape, |
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype)) |
|
|
|
gm = MLP(hidden_size=hidden_size, |
|
ffn_hidden_size=4 * hidden_size, |
|
bias=False) |
|
gm.fc.weight.value = tm.fc.weight.detach().cpu().numpy() |
|
gm.proj.weight.value = tm.proj.weight.detach().cpu().numpy() |
|
|
|
output = gm.forward(x) |
|
net._mark_output(output, 'output', |
|
tensorrt_llm.str_dtype_to_trt(dtype)) |
|
|
|
for k, v in gm.named_network_outputs(): |
|
net._mark_output(v, k, tensorrt_llm.str_dtype_to_trt(dtype)) |
|
|
|
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) |
|
with TrtRunner(build_engine) as runner: |
|
outputs = runner.infer(feed_dict={'x': x_data.numpy()}) |
|
|
|
|
|
with torch.no_grad(): |
|
ref1, ref2 = tm(x_data) |
|
|
|
|
|
np.testing.assert_allclose(ref1.cpu().numpy(), |
|
outputs['output'], |
|
atol=1e-5) |
|
np.testing.assert_allclose(ref2.cpu().numpy(), |
|
outputs['inter'], |
|
atol=1e-5) |
|
|