import streamlit as st from streamlit_chat import message from langchain.chains import ConversationalRetrievalChain from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import CTransformers from langchain.llms import Replicate from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.document_loaders import PyPDFLoader, UnstructuredFileLoader from langchain.document_loaders import TextLoader from langchain.document_loaders import Docx2txtLoader from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.text_splitter import Language, RecursiveCharacterTextSplitter import os from dotenv import load_dotenv import tempfile from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed from constants import ( CHROMA_SETTINGS, DOCUMENT_MAP, EMBEDDING_MODEL_NAME, INGEST_THREADS, PERSIST_DIRECTORY, SOURCE_DIRECTORY, ) from langchain.docstore.document import Document load_dotenv() def initialize_session_state(): if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["Hello! Ask me anything about 🤗"] if 'past' not in st.session_state: st.session_state['past'] = ["Hey! 👋"] def conversation_chat(query, chain, history): result = chain({"question": query, "chat_history": history}) history.append((query, result["answer"])) return result["answer"] def display_chat_history(chain): reply_container = st.container() container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Question:", placeholder="Ask about your Documents", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: with st.spinner('Generating response...'): output = conversation_chat(user_input, chain, st.session_state['history']) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) if st.session_state['generated']: with reply_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") def create_conversational_chain(vector_store): load_dotenv() llm = Replicate( streaming = True, # model = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781", model = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e", callbacks=[StreamingStdOutCallbackHandler()], input = {"temperature": 0.01, "max_length" :500,"top_p":1}) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff', retriever=vector_store.as_retriever(search_kwargs={"k": 2}), memory=memory) return chain file_paths = [ './SOURCE_DOCUMENTS/Freedom of Information and Protection of Privacy Act, R.S.O. 1990, c. F.31[462] - Copy.pdf', './SOURCE_DOCUMENTS/Highway Traffic Act, R.S.O. 1990, c. H.8[465] - Copy.pdf', './SOURCE_DOCUMENTS/Narcotics Safety and Awareness Act, 2010, S.O. 2010, c. 22[463].pdf', './SOURCE_DOCUMENTS/Nutrient Management Act, 2002, S.O. 2002, c. 4[464].pdf' # Add more file paths as needed ] def main(): # load_dotenv() os.environ.get("REPLICATE_API_TOKEN") # Initialize session state initialize_session_state() st.title("Multi-Docs ChatBot using llama-2-7b :books:") # loader = UnstructuredFileLoader('./SOURCE_DOCUMENTS/Freedom of Information and Protection of Privacy Act, R.S.O. 1990, c. F.31[462] - Copy.pdf') # documents = loader.load() documents = [] for file_path in file_paths: loader = UnstructuredFileLoader(file_path) loaded_doc = loader.load() # Assuming this returns a list of pages documents.extend(loaded_doc) text_splitter=CharacterTextSplitter(separator='\n', chunk_size=1500, chunk_overlap=300) text_chunks=text_splitter.split_documents(documents) embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',model_kwargs={'device': 'cpu'}) vector_store=FAISS.from_documents(text_chunks, embeddings) # Create the chain object chain = create_conversational_chain(vector_store) # Display chat history display_chat_history(chain) if __name__ == "__main__": main()