File size: 7,285 Bytes
a13c2bb c96734b 1ca78b8 5e307e7 a13c2bb c96734b a13c2bb 1ca78b8 25f51d0 cef7f39 a13c2bb 1ca78b8 25f51d0 cef7f39 a13c2bb 25f51d0 9144903 cef7f39 25f51d0 cef7f39 9144903 25f51d0 cef7f39 9144903 25f51d0 cef7f39 9144903 cef7f39 25f51d0 b142a4a 25f51d0 1ca78b8 cef7f39 25f51d0 cef7f39 25f51d0 1ca78b8 cef7f39 b142a4a 25f51d0 cef7f39 b142a4a a13c2bb 25f51d0 cef7f39 25f51d0 a13c2bb 25f51d0 cef7f39 25f51d0 cef7f39 25f51d0 3e6631d 25f51d0 a13c2bb 25f51d0 1ca78b8 25f51d0 9144903 3e6631d 25f51d0 cef7f39 25f51d0 cef7f39 25f51d0 cef7f39 9144903 b142a4a 9144903 5e307e7 b142a4a a13c2bb 9144903 3e6631d 82deaf2 25f51d0 c96734b cef7f39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import base64
import gradio as gr
import requests
import json
from io import BytesIO
from PIL import Image
# Get API key from environment variable for security
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model list
models = [
("Google Gemini Pro 2.0", "google/gemini-2.0-pro-exp-02-05:free"),
("Google Gemini 2.5 Pro", "google/gemini-2.5-pro-exp-03-25:free"),
("Meta Llama 3.2 Vision", "meta-llama/llama-3.2-11b-vision-instruct:free"),
("Qwen 2.5 VL", "qwen/qwen2.5-vl-72b-instruct:free"),
("DeepSeek R1", "deepseek/deepseek-r1:free"),
("Mistral 3.1", "mistralai/mistral-small-3.1-24b-instruct:free")
]
def get_ai_response(message, history, model_name, image=None, file=None):
"""Get response from AI"""
# Find model ID
model_id = next((mid for name, mid in models if name == model_name), models[0][1])
# Prepare messages
messages = []
for human, ai in history:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
# Handle file
if file is not None:
try:
with open(file.name, 'r', encoding='utf-8') as f:
file_content = f.read()
message = f"{message}\n\nFile content:\n```\n{file_content}\n```"
except Exception as e:
message = f"{message}\n\nError reading file: {str(e)}"
# Handle image
if image is not None:
try:
buffered = BytesIO()
image.save(buffered, format="JPEG")
base64_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
content = [
{"type": "text", "text": message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": content})
except Exception as e:
messages.append({"role": "user", "content": message})
return f"Error processing image: {str(e)}"
else:
messages.append({"role": "user", "content": message})
# API call
try:
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces",
},
json={
"model": model_id,
"messages": messages,
"temperature": 0.7,
"max_tokens": 1000
},
timeout=60
)
response.raise_for_status()
result = response.json()
return result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
except Exception as e:
return f"Error: {str(e)}"
def clear_inputs():
"""Clear input fields"""
return "", None, None
with gr.Blocks() as demo:
gr.Markdown("# 🔆 CrispChat")
chatbot = gr.Chatbot(
height=450,
type="messages" # Use the new format as suggested in the warning
)
model_selector = gr.Dropdown(
choices=[name for name, _ in models],
value=models[0][0],
label="Model"
)
msg_input = gr.Textbox(
placeholder="Type your message here...",
lines=3,
label="Message"
)
img_input = gr.Image(
type="pil",
label="Image (optional)"
)
file_input = gr.File(
label="Text File (optional)"
)
with gr.Row():
submit_btn = gr.Button("Send")
clear_btn = gr.Button("Clear Chat")
# Define clear function
def clear_chat():
return []
# Submit function
def submit_message(message, chat_history, model, image, file):
if not message and not image and not file:
return chat_history, "", None, None
response = get_ai_response(message, chat_history, model, image, file)
chat_history.append((message, response))
return chat_history, "", None, None
# Set up events
submit_btn.click(
fn=submit_message,
inputs=[msg_input, chatbot, model_selector, img_input, file_input],
outputs=[chatbot, msg_input, img_input, file_input]
)
msg_input.submit(
fn=submit_message,
inputs=[msg_input, chatbot, model_selector, img_input, file_input],
outputs=[chatbot, msg_input, img_input, file_input]
)
clear_btn.click(
fn=clear_chat,
outputs=[chatbot]
)
# FastAPI endpoint
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class GenerateRequest(BaseModel):
message: str
model: str = None
image_data: str = None
@app.post("/api/generate")
async def api_generate(request: GenerateRequest):
"""API endpoint for text generation"""
try:
model_id = request.model or models[0][1]
# Prepare messages
messages = []
# Handle image
if request.image_data:
try:
# Decode base64 image
image_bytes = base64.b64decode(request.image_data)
image = Image.open(BytesIO(image_bytes))
# Re-encode
buffered = BytesIO()
image.save(buffered, format="JPEG")
base64_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
content = [
{"type": "text", "text": request.message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": content})
except Exception as e:
return {"error": f"Image processing error: {str(e)}"}
else:
messages.append({"role": "user", "content": request.message})
# API call
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces",
},
json={
"model": model_id,
"messages": messages,
"temperature": 0.7
},
timeout=60
)
response.raise_for_status()
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
return {"response": reply}
except Exception as e:
return {"error": f"Error: {str(e)}"}
# Mount Gradio app
app = gr.mount_gradio_app(app, demo, path="/")
# Launch
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |