File size: 20,610 Bytes
a13c2bb c96734b 1ca78b8 5e9023b 37f5ab3 5e9023b c96734b 9918749 a13c2bb 1ca78b8 37f5ab3 9918749 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 a13c2bb 1ca78b8 37f5ab3 81d1619 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 81d1619 5e9023b 37f5ab3 9918749 5e9023b 9918749 a13c2bb 5e9023b 32ae536 81d1619 9144903 37f5ab3 5e9023b 9918749 5e9023b 9144903 9918749 1ca78b8 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b cef7f39 25f51d0 9918749 25f51d0 5e9023b 37f5ab3 cef7f39 25f51d0 5e9023b 9918749 81d1619 5e9023b 25f51d0 5e9023b a13c2bb 5e9023b 81d1619 9918749 32ae536 37f5ab3 3e6631d 5e9023b 37f5ab3 5e9023b 81d1619 37f5ab3 5e9023b 81d1619 5e9023b 37f5ab3 5e9023b 37f5ab3 81d1619 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 32ae536 37f5ab3 32ae536 37f5ab3 32ae536 37f5ab3 32ae536 82deaf2 9918749 c96734b 9918749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
import os
import gradio as gr
import requests
import json
import base64
from PIL import Image
import io
import logging
import PyPDF2
import markdown
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# API key
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model list with context sizes - organized by category
MODELS = [
# Vision Models
{"category": "Vision", "models": [
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("Qwen2.5 VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
("Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
]},
# Gemini Models
{"category": "Gemini", "models": [
("Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
("LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
]},
# Llama Models
{"category": "Llama", "models": [
("Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000),
("Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000),
("Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072),
("Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
("Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192),
("Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
]},
# DeepSeek Models
{"category": "DeepSeek", "models": [
("DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840),
("DeepSeek R1", "deepseek/deepseek-r1:free", 163840),
("DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072),
("DeepSeek V3 0324", "deepseek/deepseek-v3-0324:free", 131072),
("DeepSeek V3", "deepseek/deepseek-chat:free", 131072),
("DeepSeek R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
("DeepSeek R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
("DeepSeek R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
]},
# Other Popular Models
{"category": "Other Popular Models", "models": [
("Mistral Nemo", "mistralai/mistral-nemo:free", 128000),
("Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768),
]},
# Smaller Models (<50B params)
{"category": "Smaller Models", "models": [
("Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Gemma 2 9B", "google/gemma-2-9b-it:free", 8192),
("Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192),
("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192),
("Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192),
("Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192),
("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192),
("Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096),
("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096),
]},
]
# Flatten model list for easy searching
ALL_MODELS = []
for category in MODELS:
for model in category["models"]:
ALL_MODELS.append(model)
def format_to_message_dict(history):
"""Convert history to proper message format"""
messages = []
for pair in history:
if len(pair) == 2:
human, ai = pair
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
return messages
def encode_image_to_base64(image_path):
"""Encode an image file to base64 string"""
try:
if isinstance(image_path, str): # File path as string
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension == "jpg" or file_extension == "jpeg":
mime_type = "image/jpeg"
return f"data:{mime_type};base64,{encoded_string}"
else: # Pillow Image or file-like object
buffered = io.BytesIO()
image_path.save(buffered, format="PNG")
encoded_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
return f"data:image/png;base64,{encoded_string}"
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
return None
def extract_text_from_file(file_path):
"""Extract text from various file types"""
try:
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'pdf':
text = ""
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n\n"
return text
elif file_extension == 'md':
with open(file_path, 'r', encoding='utf-8') as file:
md_text = file.read()
# You can convert markdown to plain text if needed
return md_text
elif file_extension == 'txt':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
else:
return f"Unsupported file type: {file_extension}"
except Exception as e:
logger.error(f"Error extracting text from file: {str(e)}")
return f"Error processing file: {str(e)}"
def prepare_message_with_media(text, images=None, documents=None):
"""Prepare a message with text, images, and document content"""
# If no media, return text only
if not images and not documents:
return text
# Start with text content
if documents and len(documents) > 0:
# If there are documents, append their content to the text
document_texts = []
for doc in documents:
if doc is None:
continue
doc_text = extract_text_from_file(doc)
if doc_text:
document_texts.append(doc_text)
# Add document content to text
if document_texts:
if not text:
text = "Please analyze these documents:"
else:
text = f"{text}\n\nDocument content:\n\n"
text += "\n\n".join(document_texts)
# If no images, return text only
if not images:
return text
# If we have images, create a multimodal content array
content = [{"type": "text", "text": text}]
# Add images if any
if images:
for img in images:
if img is None:
continue
encoded_image = encode_image_to_base64(img)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
return content
def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p, frequency_penalty,
presence_penalty, images, documents, reasoning_effort):
"""Enhanced AI query function with comprehensive options"""
if not message.strip() and not images and not documents:
return chatbot, ""
# Get model ID and context size
model_id = None
context_size = 0
for name, model_id_value, ctx_size in ALL_MODELS:
if name == model_choice:
model_id = model_id_value
context_size = ctx_size
break
if model_id is None:
logger.error(f"Model not found: {model_choice}")
return chatbot + [[message, "Error: Model not found"]], ""
# Create messages from chatbot history
messages = format_to_message_dict(chatbot)
# Prepare message with images and documents if any
content = prepare_message_with_media(message, images, documents)
# Add current message
messages.append({"role": "user", "content": content})
# Call API
try:
logger.info(f"Sending request to model: {model_id}")
# Build the payload with all parameters
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty
}
# Add reasoning if selected
if reasoning_effort != "none":
payload["reasoning"] = {
"effort": reasoning_effort
}
logger.info(f"Request payload: {json.dumps(payload, default=str)}")
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces"
},
json=payload,
timeout=120 # Longer timeout for document processing
)
logger.info(f"Response status: {response.status_code}")
response_text = response.text
logger.info(f"Response body: {response_text}")
if response.status_code == 200:
result = response.json()
ai_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
chatbot = chatbot + [[message, ai_response]]
# Log token usage if available
if "usage" in result:
logger.info(f"Token usage: {result['usage']}")
else:
error_message = f"Error: Status code {response.status_code}\n\nResponse: {response_text}"
chatbot = chatbot + [[message, error_message]]
except Exception as e:
logger.error(f"Exception during API call: {str(e)}")
chatbot = chatbot + [[message, f"Error: {str(e)}"]]
return chatbot, ""
def clear_chat():
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, "none"
def filter_models(search_term):
"""Filter models based on search term"""
if not search_term:
return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])
filtered_models = [model[0] for model in ALL_MODELS if search_term.lower() in model[0].lower()]
if filtered_models:
return gr.Dropdown.update(choices=filtered_models, value=filtered_models[0])
else:
return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])
def get_model_info(model_name):
"""Get model information by name"""
for model in ALL_MODELS:
if model[0] == model_name:
return model
return None
def update_context_display(model_name):
"""Update the context size display based on the selected model"""
model_info = get_model_info(model_name)
if model_info:
name, model_id, context_size = model_info
context_formatted = f"{context_size:,}"
return f"{context_formatted} tokens"
return "Unknown"
# Create enhanced interface
with gr.Blocks(css="""
.context-size {
font-size: 0.9em;
color: #666;
margin-left: 10px;
}
footer { display: none !important; }
.model-selection-row {
display: flex;
align-items: center;
}
.parameter-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 10px;
}
""") as demo:
gr.Markdown("""
# Enhanced AI Chat
Chat with various AI models from OpenRouter with support for images and documents.
""")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_label=False,
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg")
)
with gr.Row():
message = gr.Textbox(
placeholder="Type your message here...",
label="Message",
lines=2
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("Send", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Row():
# Image upload
with gr.Accordion("Upload Images (for vision models)", open=False):
images = gr.Gallery(
label="Uploaded Images",
show_label=True,
columns=4,
height="auto",
object_fit="contain"
)
image_upload_btn = gr.UploadButton(
label="Upload Images",
file_types=["image"],
file_count="multiple"
)
# Document upload
with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
documents = gr.File(
label="Uploaded Documents",
file_types=[".pdf", ".md", ".txt"],
file_count="multiple"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Model Selection")
with gr.Row(elem_classes="model-selection-row"):
model_search = gr.Textbox(
placeholder="Search models...",
label="",
show_label=False
)
with gr.Row(elem_classes="model-selection-row"):
model_choice = gr.Dropdown(
[model[0] for model in ALL_MODELS],
value=ALL_MODELS[0][0],
label="Model"
)
context_display = gr.Textbox(
value=update_context_display(ALL_MODELS[0][0]),
label="Context",
interactive=False,
elem_classes="context-size"
)
# Model category selection
with gr.Accordion("Browse by Category", open=False):
model_categories = gr.Radio(
[category["category"] for category in MODELS],
label="Categories",
value=MODELS[0]["category"]
)
category_models = gr.Radio(
[model[0] for model in MODELS[0]["models"]],
label="Models in Category"
)
with gr.Accordion("Generation Parameters", open=False):
with gr.Group(elem_classes="parameter-grid"):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.8,
step=0.1,
label="Top P"
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
presence_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Presence Penalty"
)
reasoning_effort = gr.Radio(
["none", "low", "medium", "high"],
value="none",
label="Reasoning Effort"
)
# Connect model search to dropdown filter
model_search.change(
fn=filter_models,
inputs=[model_search],
outputs=[model_choice]
)
# Update context display when model changes
model_choice.change(
fn=update_context_display,
inputs=[model_choice],
outputs=[context_display]
)
# Update model list when category changes
def update_category_models(category):
for cat in MODELS:
if cat["category"] == category:
return gr.Radio.update(choices=[model[0] for model in cat["models"]], value=cat["models"][0][0])
return gr.Radio.update(choices=[], value=None)
model_categories.change(
fn=update_category_models,
inputs=[model_categories],
outputs=[category_models]
)
# Update main model choice when category model is selected
category_models.change(
fn=lambda x: x,
inputs=[category_models],
outputs=[model_choice]
)
# Process uploaded images
def process_uploaded_images(files):
return [file.name for file in files]
image_upload_btn.upload(
fn=process_uploaded_images,
inputs=[image_upload_btn],
outputs=[images]
)
# Set up events
submit_btn.click(
fn=ask_ai,
inputs=[
message, chatbot, model_choice, temperature, max_tokens,
top_p, frequency_penalty, presence_penalty, images,
documents, reasoning_effort
],
outputs=[chatbot, message]
)
message.submit(
fn=ask_ai,
inputs=[
message, chatbot, model_choice, temperature, max_tokens,
top_p, frequency_penalty, presence_penalty, images,
documents, reasoning_effort
],
outputs=[chatbot, message]
)
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[
chatbot, message, images, documents, temperature,
max_tokens, top_p, frequency_penalty, presence_penalty, reasoning_effort
]
)
# Launch directly with Gradio's built-in server
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |