File size: 20,610 Bytes
a13c2bb
c96734b
1ca78b8
 
5e9023b
 
 
 
37f5ab3
 
5e9023b
 
 
 
c96734b
9918749
a13c2bb
1ca78b8
37f5ab3
9918749
5e9023b
37f5ab3
 
 
 
 
 
 
5e9023b
 
37f5ab3
 
 
 
 
 
 
 
5e9023b
 
37f5ab3
 
 
 
 
 
 
 
5e9023b
 
37f5ab3
 
 
 
 
 
 
 
 
 
5e9023b
37f5ab3
 
 
 
 
 
 
 
 
 
5e9023b
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
1ca78b8
37f5ab3
 
 
 
 
 
81d1619
 
 
 
 
 
 
 
 
 
 
 
5e9023b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9023b
 
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9023b
 
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
5e9023b
 
 
37f5ab3
 
 
 
81d1619
 
5e9023b
 
 
37f5ab3
9918749
 
5e9023b
9918749
a13c2bb
5e9023b
 
 
 
32ae536
81d1619
9144903
37f5ab3
 
5e9023b
9918749
5e9023b
9144903
9918749
1ca78b8
5e9023b
 
37f5ab3
5e9023b
 
 
 
37f5ab3
 
 
 
5e9023b
 
37f5ab3
 
 
 
 
 
 
5e9023b
cef7f39
 
25f51d0
 
 
9918749
25f51d0
5e9023b
37f5ab3
cef7f39
25f51d0
5e9023b
 
 
 
 
9918749
 
 
81d1619
5e9023b
 
 
 
25f51d0
5e9023b
 
a13c2bb
5e9023b
81d1619
9918749
32ae536
 
 
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6631d
5e9023b
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9023b
 
81d1619
37f5ab3
5e9023b
81d1619
 
5e9023b
37f5ab3
 
 
 
 
 
5e9023b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d1619
5e9023b
 
 
 
37f5ab3
 
 
 
 
 
5e9023b
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9023b
37f5ab3
 
 
 
 
 
5e9023b
37f5ab3
5e9023b
37f5ab3
5e9023b
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9023b
 
37f5ab3
 
 
5e9023b
37f5ab3
 
 
 
5e9023b
32ae536
 
 
 
37f5ab3
 
 
 
 
32ae536
 
 
 
 
37f5ab3
 
 
 
 
32ae536
 
 
 
 
 
37f5ab3
 
 
 
32ae536
82deaf2
9918749
c96734b
9918749
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import os
import gradio as gr
import requests
import json
import base64
from PIL import Image
import io
import logging
import PyPDF2
import markdown

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# API key
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")

# Model list with context sizes - organized by category
MODELS = [
    # Vision Models
    {"category": "Vision", "models": [
        ("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
        ("Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
        ("Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
        ("Qwen2.5 VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
        ("Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
    ]},
    
    # Gemini Models
    {"category": "Gemini", "models": [
        ("Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
        ("Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
        ("Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
        ("Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
        ("Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
        ("LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
    ]},
    
    # Llama Models
    {"category": "Llama", "models": [
        ("Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000),
        ("Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000),
        ("Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072),
        ("Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
        ("Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192),
        ("Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
    ]},
    
    # DeepSeek Models
    {"category": "DeepSeek", "models": [
        ("DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840),
        ("DeepSeek R1", "deepseek/deepseek-r1:free", 163840),
        ("DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072),
        ("DeepSeek V3 0324", "deepseek/deepseek-v3-0324:free", 131072),
        ("DeepSeek V3", "deepseek/deepseek-chat:free", 131072),
        ("DeepSeek R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
        ("DeepSeek R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
        ("DeepSeek R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
    ]},
    
    # Other Popular Models
    {"category": "Other Popular Models", "models": [
        ("Mistral Nemo", "mistralai/mistral-nemo:free", 128000),
        ("Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
        ("Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
        ("Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
        ("Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
        ("DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
        ("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768),
    ]},
    
    # Smaller Models (<50B params)
    {"category": "Smaller Models", "models": [
        ("Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
        ("Gemma 2 9B", "google/gemma-2-9b-it:free", 8192),
        ("Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192),
        ("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192),
        ("Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192),
        ("Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192),
        ("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192),
        ("Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096),
        ("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096),
    ]},
]

# Flatten model list for easy searching
ALL_MODELS = []
for category in MODELS:
    for model in category["models"]:
        ALL_MODELS.append(model)

def format_to_message_dict(history):
    """Convert history to proper message format"""
    messages = []
    for pair in history:
        if len(pair) == 2:
            human, ai = pair
            if human:
                messages.append({"role": "user", "content": human})
            if ai:
                messages.append({"role": "assistant", "content": ai})
    return messages

def encode_image_to_base64(image_path):
    """Encode an image file to base64 string"""
    try:
        if isinstance(image_path, str):  # File path as string
            with open(image_path, "rb") as image_file:
                encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
                file_extension = image_path.split('.')[-1].lower()
                mime_type = f"image/{file_extension}"
                if file_extension == "jpg" or file_extension == "jpeg":
                    mime_type = "image/jpeg"
                return f"data:{mime_type};base64,{encoded_string}"
        else:  # Pillow Image or file-like object
            buffered = io.BytesIO()
            image_path.save(buffered, format="PNG")
            encoded_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
            return f"data:image/png;base64,{encoded_string}"
    except Exception as e:
        logger.error(f"Error encoding image: {str(e)}")
        return None

def extract_text_from_file(file_path):
    """Extract text from various file types"""
    try:
        file_extension = file_path.split('.')[-1].lower()
        
        if file_extension == 'pdf':
            text = ""
            with open(file_path, 'rb') as file:
                pdf_reader = PyPDF2.PdfReader(file)
                for page_num in range(len(pdf_reader.pages)):
                    page = pdf_reader.pages[page_num]
                    text += page.extract_text() + "\n\n"
            return text
        
        elif file_extension == 'md':
            with open(file_path, 'r', encoding='utf-8') as file:
                md_text = file.read()
                # You can convert markdown to plain text if needed
                return md_text
        
        elif file_extension == 'txt':
            with open(file_path, 'r', encoding='utf-8') as file:
                return file.read()
                
        else:
            return f"Unsupported file type: {file_extension}"
            
    except Exception as e:
        logger.error(f"Error extracting text from file: {str(e)}")
        return f"Error processing file: {str(e)}"

def prepare_message_with_media(text, images=None, documents=None):
    """Prepare a message with text, images, and document content"""
    # If no media, return text only
    if not images and not documents:
        return text
    
    # Start with text content
    if documents and len(documents) > 0:
        # If there are documents, append their content to the text
        document_texts = []
        for doc in documents:
            if doc is None:
                continue
            doc_text = extract_text_from_file(doc)
            if doc_text:
                document_texts.append(doc_text)
        
        # Add document content to text
        if document_texts:
            if not text:
                text = "Please analyze these documents:"
            else:
                text = f"{text}\n\nDocument content:\n\n"
            
            text += "\n\n".join(document_texts)
            
        # If no images, return text only
        if not images:
            return text
    
    # If we have images, create a multimodal content array
    content = [{"type": "text", "text": text}]
    
    # Add images if any
    if images:
        for img in images:
            if img is None:
                continue
            
            encoded_image = encode_image_to_base64(img)
            if encoded_image:
                content.append({
                    "type": "image_url",
                    "image_url": {"url": encoded_image}
                })
    
    return content

def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p, frequency_penalty, 
           presence_penalty, images, documents, reasoning_effort):
    """Enhanced AI query function with comprehensive options"""
    if not message.strip() and not images and not documents:
        return chatbot, ""
    
    # Get model ID and context size
    model_id = None
    context_size = 0
    for name, model_id_value, ctx_size in ALL_MODELS:
        if name == model_choice:
            model_id = model_id_value
            context_size = ctx_size
            break
    
    if model_id is None:
        logger.error(f"Model not found: {model_choice}")
        return chatbot + [[message, "Error: Model not found"]], ""
    
    # Create messages from chatbot history
    messages = format_to_message_dict(chatbot)
    
    # Prepare message with images and documents if any
    content = prepare_message_with_media(message, images, documents)
    
    # Add current message
    messages.append({"role": "user", "content": content})
    
    # Call API
    try:
        logger.info(f"Sending request to model: {model_id}")
        
        # Build the payload with all parameters
        payload = {
            "model": model_id,
            "messages": messages,
            "temperature": temperature,
            "max_tokens": max_tokens,
            "top_p": top_p,
            "frequency_penalty": frequency_penalty,
            "presence_penalty": presence_penalty
        }
        
        # Add reasoning if selected
        if reasoning_effort != "none":
            payload["reasoning"] = {
                "effort": reasoning_effort
            }
        
        logger.info(f"Request payload: {json.dumps(payload, default=str)}")
        
        response = requests.post(
            "https://openrouter.ai/api/v1/chat/completions",
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {OPENROUTER_API_KEY}",
                "HTTP-Referer": "https://huggingface.co/spaces"
            },
            json=payload,
            timeout=120  # Longer timeout for document processing
        )
        
        logger.info(f"Response status: {response.status_code}")
        
        response_text = response.text
        logger.info(f"Response body: {response_text}")
        
        if response.status_code == 200:
            result = response.json()
            ai_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
            chatbot = chatbot + [[message, ai_response]]
            
            # Log token usage if available
            if "usage" in result:
                logger.info(f"Token usage: {result['usage']}")
        else:
            error_message = f"Error: Status code {response.status_code}\n\nResponse: {response_text}"
            chatbot = chatbot + [[message, error_message]]
    except Exception as e:
        logger.error(f"Exception during API call: {str(e)}")
        chatbot = chatbot + [[message, f"Error: {str(e)}"]]
    
    return chatbot, ""

def clear_chat():
    return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, "none"

def filter_models(search_term):
    """Filter models based on search term"""
    if not search_term:
        return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])
    
    filtered_models = [model[0] for model in ALL_MODELS if search_term.lower() in model[0].lower()]
    
    if filtered_models:
        return gr.Dropdown.update(choices=filtered_models, value=filtered_models[0])
    else:
        return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])

def get_model_info(model_name):
    """Get model information by name"""
    for model in ALL_MODELS:
        if model[0] == model_name:
            return model
    return None

def update_context_display(model_name):
    """Update the context size display based on the selected model"""
    model_info = get_model_info(model_name)
    if model_info:
        name, model_id, context_size = model_info
        context_formatted = f"{context_size:,}"
        return f"{context_formatted} tokens"
    return "Unknown"

# Create enhanced interface
with gr.Blocks(css="""
    .context-size { 
        font-size: 0.9em;
        color: #666;
        margin-left: 10px;
    }
    footer { display: none !important; }
    .model-selection-row {
        display: flex;
        align-items: center;
    }
    .parameter-grid {
        display: grid;
        grid-template-columns: 1fr 1fr;
        gap: 10px;
    }
""") as demo:
    gr.Markdown("""
    # Enhanced AI Chat
    
    Chat with various AI models from OpenRouter with support for images and documents.
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                height=500, 
                show_copy_button=True, 
                show_label=False,
                avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg")
            )
            
            with gr.Row():
                message = gr.Textbox(
                    placeholder="Type your message here...",
                    label="Message",
                    lines=2
                )
            
            with gr.Row():
                with gr.Column(scale=3):
                    submit_btn = gr.Button("Send", variant="primary")
                
                with gr.Column(scale=1):
                    clear_btn = gr.Button("Clear Chat", variant="secondary")
            
            with gr.Row():
                # Image upload
                with gr.Accordion("Upload Images (for vision models)", open=False):
                    images = gr.Gallery(
                        label="Uploaded Images", 
                        show_label=True,
                        columns=4, 
                        height="auto",
                        object_fit="contain"
                    )
                    
                    image_upload_btn = gr.UploadButton(
                        label="Upload Images",
                        file_types=["image"],
                        file_count="multiple"
                    )
                
                # Document upload
                with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
                    documents = gr.File(
                        label="Uploaded Documents",
                        file_types=[".pdf", ".md", ".txt"], 
                        file_count="multiple"
                    )
        
        with gr.Column(scale=1):
            with gr.Group():
                gr.Markdown("### Model Selection")
                
                with gr.Row(elem_classes="model-selection-row"):
                    model_search = gr.Textbox(
                        placeholder="Search models...",
                        label="",
                        show_label=False
                    )
                
                with gr.Row(elem_classes="model-selection-row"):
                    model_choice = gr.Dropdown(
                        [model[0] for model in ALL_MODELS],
                        value=ALL_MODELS[0][0],
                        label="Model"
                    )
                    context_display = gr.Textbox(
                        value=update_context_display(ALL_MODELS[0][0]),
                        label="Context",
                        interactive=False,
                        elem_classes="context-size"
                    )
                
                # Model category selection
                with gr.Accordion("Browse by Category", open=False):
                    model_categories = gr.Radio(
                        [category["category"] for category in MODELS],
                        label="Categories",
                        value=MODELS[0]["category"]
                    )
                    
                    category_models = gr.Radio(
                        [model[0] for model in MODELS[0]["models"]],
                        label="Models in Category"
                    )
            
            with gr.Accordion("Generation Parameters", open=False):
                with gr.Group(elem_classes="parameter-grid"):
                    temperature = gr.Slider(
                        minimum=0.0, 
                        maximum=2.0, 
                        value=0.7, 
                        step=0.1,
                        label="Temperature"
                    )
                    
                    max_tokens = gr.Slider(
                        minimum=100, 
                        maximum=4000, 
                        value=1000, 
                        step=100,
                        label="Max Tokens"
                    )
                    
                    top_p = gr.Slider(
                        minimum=0.1, 
                        maximum=1.0, 
                        value=0.8, 
                        step=0.1,
                        label="Top P"
                    )
                    
                    frequency_penalty = gr.Slider(
                        minimum=-2.0, 
                        maximum=2.0, 
                        value=0.0, 
                        step=0.1,
                        label="Frequency Penalty"
                    )
                    
                    presence_penalty = gr.Slider(
                        minimum=-2.0, 
                        maximum=2.0, 
                        value=0.0, 
                        step=0.1,
                        label="Presence Penalty"
                    )
                    
                    reasoning_effort = gr.Radio(
                        ["none", "low", "medium", "high"],
                        value="none",
                        label="Reasoning Effort"
                    )
    
    # Connect model search to dropdown filter
    model_search.change(
        fn=filter_models,
        inputs=[model_search],
        outputs=[model_choice]
    )
    
    # Update context display when model changes
    model_choice.change(
        fn=update_context_display,
        inputs=[model_choice],
        outputs=[context_display]
    )
    
    # Update model list when category changes
    def update_category_models(category):
        for cat in MODELS:
            if cat["category"] == category:
                return gr.Radio.update(choices=[model[0] for model in cat["models"]], value=cat["models"][0][0])
        return gr.Radio.update(choices=[], value=None)
    
    model_categories.change(
        fn=update_category_models,
        inputs=[model_categories],
        outputs=[category_models]
    )
    
    # Update main model choice when category model is selected
    category_models.change(
        fn=lambda x: x,
        inputs=[category_models],
        outputs=[model_choice]
    )
    
    # Process uploaded images
    def process_uploaded_images(files):
        return [file.name for file in files]
    
    image_upload_btn.upload(
        fn=process_uploaded_images,
        inputs=[image_upload_btn],
        outputs=[images]
    )
    
    # Set up events
    submit_btn.click(
        fn=ask_ai,
        inputs=[
            message, chatbot, model_choice, temperature, max_tokens, 
            top_p, frequency_penalty, presence_penalty, images, 
            documents, reasoning_effort
        ],
        outputs=[chatbot, message]
    )
    
    message.submit(
        fn=ask_ai,
        inputs=[
            message, chatbot, model_choice, temperature, max_tokens, 
            top_p, frequency_penalty, presence_penalty, images, 
            documents, reasoning_effort
        ],
        outputs=[chatbot, message]
    )
    
    clear_btn.click(
        fn=clear_chat,
        inputs=[],
        outputs=[
            chatbot, message, images, documents, temperature, 
            max_tokens, top_p, frequency_penalty, presence_penalty, reasoning_effort
        ]
    )

# Launch directly with Gradio's built-in server
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)