File size: 23,724 Bytes
a13c2bb
 
c96734b
1ca78b8
 
5e307e7
a13c2bb
5e307e7
c96734b
a13c2bb
 
1ca78b8
a13c2bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ca78b8
a13c2bb
 
 
 
 
 
 
 
 
 
25aa6b5
3e6631d
 
 
 
 
 
 
 
a13c2bb
3e6631d
 
 
 
 
 
1ca78b8
a13c2bb
 
 
5e307e7
a13c2bb
 
3e6631d
 
 
 
 
 
 
 
 
 
5e307e7
3e6631d
 
a13c2bb
 
 
5e307e7
 
a13c2bb
 
 
 
 
3e6631d
a13c2bb
 
 
 
 
 
 
 
3e6631d
 
 
 
 
 
 
 
 
a13c2bb
3e6631d
a13c2bb
 
 
 
3e6631d
a13c2bb
3e6631d
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
 
3e6631d
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
 
 
1ca78b8
5e307e7
3e6631d
 
 
 
1ca78b8
a13c2bb
1ca78b8
5e307e7
3e6631d
 
 
 
 
5e307e7
a13c2bb
3e6631d
 
 
 
 
 
 
 
 
5e307e7
3e6631d
 
 
5e307e7
 
3e6631d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
3e6631d
a13c2bb
1ca78b8
5e307e7
3e6631d
 
1ca78b8
a13c2bb
 
 
3e6631d
 
 
 
 
 
a13c2bb
3e6631d
 
a13c2bb
3e6631d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
 
 
3e6631d
a13c2bb
 
 
 
3e6631d
a13c2bb
 
 
3e6631d
 
 
 
 
 
 
 
 
 
a13c2bb
 
1ca78b8
5e307e7
a13c2bb
 
 
3e6631d
a13c2bb
1ca78b8
a13c2bb
1ca78b8
3e6631d
a13c2bb
3e6631d
a13c2bb
 
 
3e6631d
 
 
5e307e7
a13c2bb
 
 
3e6631d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
3e6631d
a13c2bb
 
 
 
3e6631d
a13c2bb
 
 
 
3e6631d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
3e6631d
a13c2bb
3e6631d
 
 
 
 
a13c2bb
 
 
 
 
3e6631d
 
 
 
a13c2bb
3e6631d
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
 
 
 
3e6631d
 
 
 
 
 
 
a13c2bb
 
 
3e6631d
 
a13c2bb
3e6631d
 
 
 
 
 
 
 
 
 
 
a13c2bb
 
 
 
3e6631d
 
 
 
 
a13c2bb
 
 
 
 
3e6631d
 
 
 
 
a13c2bb
1ca78b8
 
3e6631d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a13c2bb
 
3e6631d
 
 
5e307e7
3e6631d
 
 
 
 
 
 
 
 
 
 
 
5e307e7
3e6631d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e307e7
3e6631d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e307e7
3e6631d
 
 
 
 
 
a13c2bb
3e6631d
 
 
 
c96734b
3e6631d
 
 
 
 
 
 
 
 
 
 
 
82deaf2
3e6631d
c96734b
3e6631d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import os
import base64
import gradio as gr
import requests
import json
from io import BytesIO
from PIL import Image
import time

# Get API key from environment variable for security
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")

# Model information
free_models = [
    ("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 0, 0, 2000000),
    ("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 0, 0, 1048576),
    ("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 0, 0, 1048576),
    ("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 0, 0, 1000000),
    ("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 0, 0, 1000000),
    ("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 0, 0, 163840),
    ("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 0, 0, 163840),
    ("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 0, 0, 131072),
    ("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-chat-v3-0324:free", 0, 0, 131072),
    ("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 0, 0, 131072),
    ("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 0, 0, 131072),
    ("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 0, 0, 131072),
    ("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 0, 0, 131072),
    ("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 0, 0, 131072),
    ("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 0, 0, 131072),
    ("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 0, 0, 131072),
    ("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 0, 0, 131072),
    ("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 0, 0, 131072),
    ("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 0, 0, 128000),
    ("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 0, 0, 96000),
    ("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 0, 0, 96000),
    ("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 0, 0, 64000),
    ("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 0, 0, 64000),
    ("Qwen: Qwen2.5-VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 0, 0, 64000),
    ("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 0, 0, 40960),
    ("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 0, 0, 40000),
    ("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 0, 0, 40000),
    ("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 0, 0, 32768),
    ("Qwerky 72b (free)", "featherless/qwerky-72b:free", 0, 0, 32768),
    ("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 0, 0, 32768),
    ("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 0, 0, 32768),
    ("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 0, 0, 32768),
    ("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 0, 0, 32768),
    ("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 0, 0, 32768),
    ("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 0, 0, 32768),
    ("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 0, 0, 32768),
    ("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 0, 0, 32768),
    ("Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 0, 0, 32768),
    ("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 0, 0, 20000),
    ("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 0, 0, 16384),
    ("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 0, 0, 16000),
    ("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 0, 0, 8192),
    ("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 0, 0, 8192),
    ("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 0, 0, 8192),
    ("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 0, 0, 8192),
    ("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 0, 0, 8192),
    ("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 0, 0, 8192),
    ("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 0, 0, 8192),
    ("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 0, 0, 8192),
    ("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 0, 0, 8192),
    ("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 0, 0, 8192),
    ("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 0, 0, 8000),
    ("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 0, 0, 4096),
    ("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 0, 0, 4096),
    ("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 0, 0, 4096),
    ("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 0, 0, 4096),
    ("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 0, 0, 4096),
]

# Filter for vision models
vision_model_ids = [
    "meta-llama/llama-3.2-11b-vision-instruct:free",
    "qwen/qwen2.5-vl-72b-instruct:free", 
    "qwen/qwen2.5-vl-3b-instruct:free",
    "qwen/qwen2.5-vl-32b-instruct:free",
    "qwen/qwen-2.5-vl-7b-instruct:free",
    "google/gemini-2.0-pro-exp-02-05:free",
    "google/gemini-2.5-pro-exp-03-25:free"
]

# Format model names to include context size
def format_model_name(name, context_size):
    if context_size >= 1000000:
        context_str = f"{context_size/1000000:.1f}M tokens"
    else:
        context_str = f"{context_size/1000:.0f}K tokens"
    return f"{name} ({context_str})"

# Prefilter vision models
vision_models = [(format_model_name(name, context_size), model_id, context_size) 
                for name, model_id, _, _, context_size in free_models 
                if model_id in vision_model_ids]

text_models = [(format_model_name(name, context_size), model_id, context_size) 
              for name, model_id, _, _, context_size in free_models]

def encode_image(image):
    """Convert PIL Image to base64 string"""
    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")

def encode_file(file_path):
    """Convert text file to string"""
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            return file.read()
    except Exception as e:
        return f"Error reading file: {str(e)}"

def process_message_stream(message, chat_history, model_name, uploaded_image=None, uploaded_file=None, 
                           temperature=0.7, top_p=1.0, max_tokens=None, stream=True):
    """Process message and stream the model response"""
    # Extract model_id from the display name
    model_id = model_name.split(' ')[1] if len(model_name.split(' ')) > 1 else model_name
    
    # Check if API key is set
    if not OPENROUTER_API_KEY:
        yield "Please set your OpenRouter API key in the environment variables.", chat_history
        return
    
    # Setup headers and URL
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {OPENROUTER_API_KEY}",
        "HTTP-Referer": "https://huggingface.co/spaces",  # Replace with your actual space URL in production
    }
    
    url = "https://openrouter.ai/api/v1/chat/completions"
    
    # Build message content
    messages = []
    
    # Add chat history
    for item in chat_history:
        if isinstance(item, tuple):
            # Old format compatibility
            human_msg, ai_msg = item
            messages.append({"role": "user", "content": human_msg})
            messages.append({"role": "assistant", "content": ai_msg})
        else:
            # New message format
            messages.append(item)
    
    # Add current message with any attachments
    if uploaded_image:
        # Image processing for vision models
        base64_image = encode_image(uploaded_image)
        content = [
            {"type": "text", "text": message}
        ]
        
        # Add text from file if provided
        if uploaded_file:
            file_content = encode_file(uploaded_file)
            content[0]["text"] = f"{message}\n\nFile content:\n```\n{file_content}\n```"
            
        # Add image
        content.append({
            "type": "image_url",
            "image_url": {
                "url": f"data:image/jpeg;base64,{base64_image}"
            }
        })
        
        messages.append({"role": "user", "content": content})
    else:
        if uploaded_file:
            file_content = encode_file(uploaded_file)
            content = f"{message}\n\nFile content:\n```\n{file_content}\n```"
            messages.append({"role": "user", "content": content})
        else:
            messages.append({"role": "user", "content": message})
    
    # Get context length for the model
    context_length = next((context for _, model_id, context in text_models if model_id == model_id), 4096)
    
    # Calculate default max tokens if not specified
    if not max_tokens:
        # Use 25% of context length as a reasonable default
        max_tokens = min(4000, int(context_length * 0.25))
    
    # Build request data
    data = {
        "model": model_id,
        "messages": messages,
        "stream": stream,
        "temperature": temperature,
        "top_p": top_p,
        "max_tokens": max_tokens
    }
    
    try:
        # Create a new message pair in the chat history
        user_msg = {"role": "user", "content": message}
        ai_msg = {"role": "assistant", "content": ""}
        chat_history.append(user_msg)
        chat_history.append(ai_msg)
        
        full_response = ""
        
        if stream:
            # Make streaming API call
            with requests.post(url, headers=headers, json=data, stream=True) as response:
                response.raise_for_status()
                buffer = ""
                
                for chunk in response.iter_content(chunk_size=1024, decode_unicode=False):
                    if chunk:
                        buffer += chunk.decode('utf-8')
                        
                        while True:
                            line_end = buffer.find('\n')
                            if line_end == -1:
                                break
                                
                            line = buffer[:line_end].strip()
                            buffer = buffer[line_end + 1:]
                            
                            if line.startswith('data: '):
                                data = line[6:]
                                if data == '[DONE]':
                                    break
                                    
                                try:
                                    data_obj = json.loads(data)
                                    delta_content = data_obj["choices"][0]["delta"].get("content", "")
                                    if delta_content:
                                        full_response += delta_content
                                        # Update the last assistant message
                                        chat_history[-1]["content"] = full_response
                                        yield chat_history
                                except json.JSONDecodeError:
                                    pass
        else:
            # Non-streaming API call
            response = requests.post(url, headers=headers, json=data)
            response.raise_for_status()
            result = response.json()
            full_response = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
            chat_history[-1]["content"] = full_response
            yield chat_history
        
        return chat_history
    
    except Exception as e:
        error_msg = f"Error: {str(e)}"
        chat_history[-1]["content"] = error_msg
        yield chat_history

# Create a nice CSS theme
css = """
.gradio-container {
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
}
.chat-message {
    padding: 15px;
    border-radius: 10px;
    margin-bottom: 10px;
}
.user-message {
    background-color: #f0f4f8;
}
.assistant-message {
    background-color: #e9f5ff;
}
#chat-container {
    height: 600px;
    overflow-y: auto;
}
#chat-input {
    min-height: 120px;
    border-radius: 8px;
    padding: 10px;
}
#model-select-container {
    border-radius: 8px;
    padding: 15px;
    background-color: #f8fafc;
}
.app-header {
    text-align: center;
    margin-bottom: 20px;
}
.app-header h1 {
    font-weight: 700;
    color: #2C3E50;
    margin-bottom: 5px;
}
.app-header p {
    color: #7F8C8D;
    margin-top: 0;
}
.parameter-container {
    background-color: #f8fafc;
    padding: 10px;
    border-radius: 8px;
    margin-top: 10px;
}
.file-upload-container {
    margin-top: 10px;
}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    gr.HTML("""
    <div class="app-header">
        <h1>🔆 CrispChat</h1>
        <p>Chat with free OpenRouter AI models - supports text, images, and files</p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(
                height=600,
                show_copy_button=True,
                show_share_button=False,
                elem_id="chatbot",
                layout="bubble",
                avatar_images=("👤", "🤖"),
                bubble_full_width=False,
                type="messages"  # Use new message format
            )
            
            with gr.Row():
                with gr.Column(scale=10):
                    user_message = gr.Textbox(
                        placeholder="Type your message here...",
                        show_label=False,
                        elem_id="chat-input",
                        lines=3
                    )
                    
                    with gr.Row():
                        image_upload = gr.Image(
                            type="pil", 
                            label="Image (optional)",
                            show_label=True,
                            scale=1
                        )
                        
                        file_upload = gr.File(
                            label="Text File (optional)",
                            file_types=[".txt", ".md", ".py", ".js", ".html", ".css", ".json"],
                            scale=1
                        )
                        
                        submit_btn = gr.Button("Send", scale=1, variant="primary")
            
        with gr.Column(scale=2):
            with gr.Accordion("Model Selection", open=True):
                using_vision = gr.Checkbox(label="Using image", value=False)
                
                model_selector = gr.Dropdown(
                    choices=[name for name, _, _ in text_models],
                    value=text_models[0][0],
                    label="Select Model",
                    elem_id="model-selector"
                )
                
                context_info = gr.Markdown(value=f"Context: {text_models[0][2]:,} tokens")
                
            with gr.Accordion("Parameters", open=False):
                with gr.Group():
                    temperature = gr.Slider(
                        minimum=0.0, 
                        maximum=2.0, 
                        value=0.7, 
                        step=0.1, 
                        label="Temperature",
                        info="Higher = more creative, Lower = more deterministic"
                    )
                    
                    top_p = gr.Slider(
                        minimum=0.1, 
                        maximum=1.0, 
                        value=1.0, 
                        step=0.1, 
                        label="Top P",
                        info="Controls token diversity"
                    )
                    
                    max_tokens = gr.Slider(
                        minimum=100, 
                        maximum=8000, 
                        value=1000, 
                        step=100, 
                        label="Max Tokens",
                        info="Maximum length of the response"
                    )
                    
                    use_streaming = gr.Checkbox(
                        label="Stream Response", 
                        value=True,
                        info="Show response as it's generated"
                    )
            
            with gr.Accordion("Tips", open=False):
                gr.Markdown("""
                * Select a vision-capable model for images
                * Upload text files to include their content
                * Check model context window sizes
                * Adjust temperature for creativity level
                * Top P controls diversity of responses
                """)
    
    # Define events
    def update_model_selector(use_vision):
        if use_vision:
            return (
                gr.Dropdown(choices=[name for name, _, _ in vision_models], value=vision_models[0][0]),
                f"Context: {vision_models[0][2]:,} tokens"
            )
        else:
            return (
                gr.Dropdown(choices=[name for name, _, _ in text_models], value=text_models[0][0]),
                f"Context: {text_models[0][2]:,} tokens"
            )
    
    def update_context_info(model_name):
        # Extract context size from model name
        for name, _, context_size in text_models:
            if name == model_name:
                return f"Context: {context_size:,} tokens"
        for name, _, context_size in vision_models:
            if name == model_name:
                return f"Context: {context_size:,} tokens"
        return "Context size unknown"
    
    using_vision.change(
        fn=update_model_selector,
        inputs=using_vision,
        outputs=[model_selector, context_info]
    )
    
    model_selector.change(
        fn=update_context_info,
        inputs=model_selector,
        outputs=context_info
    )
    
    # Submit function
    def on_submit(message, history, model, image, file, temp, top_p_val, max_tok, stream):
        if not message and not image and not file:
            return "", history
        return "", process_message_stream(
            message, 
            history, 
            model, 
            image, 
            file.name if file else None,
            temperature=temp,
            top_p=top_p_val,
            max_tokens=max_tok,
            stream=stream
        )
    
    # Set up submission events
    submit_btn.click(
        on_submit,
        inputs=[
            user_message, chatbot, model_selector, 
            image_upload, file_upload,
            temperature, top_p, max_tokens, use_streaming
        ],
        outputs=[user_message, chatbot]
    )
    
    user_message.submit(
        on_submit,
        inputs=[
            user_message, chatbot, model_selector, 
            image_upload, file_upload,
            temperature, top_p, max_tokens, use_streaming
        ],
        outputs=[user_message, chatbot]
    )

# Define FastAPI endpoint
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware

app = FastAPI()

class GenerateRequest(BaseModel):
    message: str
    model: str = None
    image_data: str = None

@app.post("/api/generate")
async def api_generate(request: GenerateRequest):
    """API endpoint for generating responses"""
    try:
        message = request.message
        model_name = request.model
        image_data = request.image_data
        
        # Process image if provided
        image = None
        if image_data:
            try:
                # Decode base64 image
                image_bytes = base64.b64decode(image_data)
                image = Image.open(BytesIO(image_bytes))
            except Exception as e:
                return JSONResponse(
                    status_code=400,
                    content={"error": f"Image processing error: {str(e)}"}
                )
        
        # Generate response
        try:
            # Setup headers and URL
            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {OPENROUTER_API_KEY}",
                "HTTP-Referer": "https://huggingface.co/spaces",
            }
            
            url = "https://openrouter.ai/api/v1/chat/completions"
            
            # Get model_id from model_name
            model_id = None
            if model_name:
                for _, mid, _ in text_models + vision_models:
                    if model_name in mid or model_name == mid:
                        model_id = mid
                        break
            
            if not model_id:
                model_id = text_models[0][1]
            
            # Build messages
            messages = []
            
            if image:
                # Image processing for vision models
                base64_image = encode_image(image)
                content = [
                    {"type": "text", "text": message},
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64_image}"
                        }
                    }
                ]
                messages.append({"role": "user", "content": content})
            else:
                messages.append({"role": "user", "content": message})
            
            # Build request data
            data = {
                "model": model_id,
                "messages": messages,
                "temperature": 0.7
            }
            
            # Make API call
            response = requests.post(url, headers=headers, json=data)
            response.raise_for_status()
            
            # Parse response
            result = response.json()
            reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
            
            return {"response": reply}
        
        except Exception as e:
            return JSONResponse(
                status_code=500,
                content={"error": f"Error generating response: {str(e)}"}
            )
            
    except Exception as e:
        return JSONResponse(
            status_code=500,
            content={"error": f"Server error: {str(e)}"}
        )

# Add CORS middleware to allow cross-origin requests
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Mount Gradio app
import gradio as gr
app = gr.mount_gradio_app(app, demo, path="/")

# Start the app
if __name__ == "__main__":
    # Use 'uvicorn' directly in HF Spaces
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)