File size: 23,724 Bytes
a13c2bb c96734b 1ca78b8 5e307e7 a13c2bb 5e307e7 c96734b a13c2bb 1ca78b8 a13c2bb 1ca78b8 a13c2bb 25aa6b5 3e6631d a13c2bb 3e6631d 1ca78b8 a13c2bb 5e307e7 a13c2bb 3e6631d 5e307e7 3e6631d a13c2bb 5e307e7 a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 1ca78b8 5e307e7 3e6631d 1ca78b8 a13c2bb 1ca78b8 5e307e7 3e6631d 5e307e7 a13c2bb 3e6631d 5e307e7 3e6631d 5e307e7 3e6631d a13c2bb 3e6631d a13c2bb 1ca78b8 5e307e7 3e6631d 1ca78b8 a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 1ca78b8 5e307e7 a13c2bb 3e6631d a13c2bb 1ca78b8 a13c2bb 1ca78b8 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d 5e307e7 a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 3e6631d a13c2bb 1ca78b8 3e6631d a13c2bb 3e6631d 5e307e7 3e6631d 5e307e7 3e6631d 5e307e7 3e6631d 5e307e7 3e6631d a13c2bb 3e6631d c96734b 3e6631d 82deaf2 3e6631d c96734b 3e6631d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import os
import base64
import gradio as gr
import requests
import json
from io import BytesIO
from PIL import Image
import time
# Get API key from environment variable for security
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model information
free_models = [
("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 0, 0, 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 0, 0, 1048576),
("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 0, 0, 1048576),
("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 0, 0, 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 0, 0, 1000000),
("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 0, 0, 163840),
("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 0, 0, 163840),
("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-chat-v3-0324:free", 0, 0, 131072),
("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 0, 0, 131072),
("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 0, 0, 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 0, 0, 131072),
("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 0, 0, 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 0, 0, 131072),
("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 0, 0, 131072),
("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 0, 0, 128000),
("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 0, 0, 96000),
("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 0, 0, 96000),
("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 0, 0, 64000),
("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 0, 0, 64000),
("Qwen: Qwen2.5-VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 0, 0, 64000),
("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 0, 0, 40960),
("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 0, 0, 40000),
("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 0, 0, 40000),
("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 0, 0, 32768),
("Qwerky 72b (free)", "featherless/qwerky-72b:free", 0, 0, 32768),
("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 0, 0, 32768),
("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 0, 0, 32768),
("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 0, 0, 32768),
("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 0, 0, 32768),
("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 0, 0, 32768),
("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 0, 0, 32768),
("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 0, 0, 32768),
("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 0, 0, 32768),
("Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 0, 0, 32768),
("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 0, 0, 20000),
("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 0, 0, 16384),
("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 0, 0, 16000),
("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 0, 0, 8192),
("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 0, 0, 8192),
("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 0, 0, 8192),
("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 0, 0, 8192),
("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 0, 0, 8192),
("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 0, 0, 8192),
("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 0, 0, 8192),
("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 0, 0, 8192),
("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 0, 0, 8000),
("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 0, 0, 4096),
("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 0, 0, 4096),
("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 0, 0, 4096),
("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 0, 0, 4096),
("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 0, 0, 4096),
]
# Filter for vision models
vision_model_ids = [
"meta-llama/llama-3.2-11b-vision-instruct:free",
"qwen/qwen2.5-vl-72b-instruct:free",
"qwen/qwen2.5-vl-3b-instruct:free",
"qwen/qwen2.5-vl-32b-instruct:free",
"qwen/qwen-2.5-vl-7b-instruct:free",
"google/gemini-2.0-pro-exp-02-05:free",
"google/gemini-2.5-pro-exp-03-25:free"
]
# Format model names to include context size
def format_model_name(name, context_size):
if context_size >= 1000000:
context_str = f"{context_size/1000000:.1f}M tokens"
else:
context_str = f"{context_size/1000:.0f}K tokens"
return f"{name} ({context_str})"
# Prefilter vision models
vision_models = [(format_model_name(name, context_size), model_id, context_size)
for name, model_id, _, _, context_size in free_models
if model_id in vision_model_ids]
text_models = [(format_model_name(name, context_size), model_id, context_size)
for name, model_id, _, _, context_size in free_models]
def encode_image(image):
"""Convert PIL Image to base64 string"""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def encode_file(file_path):
"""Convert text file to string"""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
return f"Error reading file: {str(e)}"
def process_message_stream(message, chat_history, model_name, uploaded_image=None, uploaded_file=None,
temperature=0.7, top_p=1.0, max_tokens=None, stream=True):
"""Process message and stream the model response"""
# Extract model_id from the display name
model_id = model_name.split(' ')[1] if len(model_name.split(' ')) > 1 else model_name
# Check if API key is set
if not OPENROUTER_API_KEY:
yield "Please set your OpenRouter API key in the environment variables.", chat_history
return
# Setup headers and URL
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces", # Replace with your actual space URL in production
}
url = "https://openrouter.ai/api/v1/chat/completions"
# Build message content
messages = []
# Add chat history
for item in chat_history:
if isinstance(item, tuple):
# Old format compatibility
human_msg, ai_msg = item
messages.append({"role": "user", "content": human_msg})
messages.append({"role": "assistant", "content": ai_msg})
else:
# New message format
messages.append(item)
# Add current message with any attachments
if uploaded_image:
# Image processing for vision models
base64_image = encode_image(uploaded_image)
content = [
{"type": "text", "text": message}
]
# Add text from file if provided
if uploaded_file:
file_content = encode_file(uploaded_file)
content[0]["text"] = f"{message}\n\nFile content:\n```\n{file_content}\n```"
# Add image
content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
})
messages.append({"role": "user", "content": content})
else:
if uploaded_file:
file_content = encode_file(uploaded_file)
content = f"{message}\n\nFile content:\n```\n{file_content}\n```"
messages.append({"role": "user", "content": content})
else:
messages.append({"role": "user", "content": message})
# Get context length for the model
context_length = next((context for _, model_id, context in text_models if model_id == model_id), 4096)
# Calculate default max tokens if not specified
if not max_tokens:
# Use 25% of context length as a reasonable default
max_tokens = min(4000, int(context_length * 0.25))
# Build request data
data = {
"model": model_id,
"messages": messages,
"stream": stream,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens
}
try:
# Create a new message pair in the chat history
user_msg = {"role": "user", "content": message}
ai_msg = {"role": "assistant", "content": ""}
chat_history.append(user_msg)
chat_history.append(ai_msg)
full_response = ""
if stream:
# Make streaming API call
with requests.post(url, headers=headers, json=data, stream=True) as response:
response.raise_for_status()
buffer = ""
for chunk in response.iter_content(chunk_size=1024, decode_unicode=False):
if chunk:
buffer += chunk.decode('utf-8')
while True:
line_end = buffer.find('\n')
if line_end == -1:
break
line = buffer[:line_end].strip()
buffer = buffer[line_end + 1:]
if line.startswith('data: '):
data = line[6:]
if data == '[DONE]':
break
try:
data_obj = json.loads(data)
delta_content = data_obj["choices"][0]["delta"].get("content", "")
if delta_content:
full_response += delta_content
# Update the last assistant message
chat_history[-1]["content"] = full_response
yield chat_history
except json.JSONDecodeError:
pass
else:
# Non-streaming API call
response = requests.post(url, headers=headers, json=data)
response.raise_for_status()
result = response.json()
full_response = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
chat_history[-1]["content"] = full_response
yield chat_history
return chat_history
except Exception as e:
error_msg = f"Error: {str(e)}"
chat_history[-1]["content"] = error_msg
yield chat_history
# Create a nice CSS theme
css = """
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
}
.chat-message {
padding: 15px;
border-radius: 10px;
margin-bottom: 10px;
}
.user-message {
background-color: #f0f4f8;
}
.assistant-message {
background-color: #e9f5ff;
}
#chat-container {
height: 600px;
overflow-y: auto;
}
#chat-input {
min-height: 120px;
border-radius: 8px;
padding: 10px;
}
#model-select-container {
border-radius: 8px;
padding: 15px;
background-color: #f8fafc;
}
.app-header {
text-align: center;
margin-bottom: 20px;
}
.app-header h1 {
font-weight: 700;
color: #2C3E50;
margin-bottom: 5px;
}
.app-header p {
color: #7F8C8D;
margin-top: 0;
}
.parameter-container {
background-color: #f8fafc;
padding: 10px;
border-radius: 8px;
margin-top: 10px;
}
.file-upload-container {
margin-top: 10px;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div class="app-header">
<h1>🔆 CrispChat</h1>
<p>Chat with free OpenRouter AI models - supports text, images, and files</p>
</div>
""")
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
show_share_button=False,
elem_id="chatbot",
layout="bubble",
avatar_images=("👤", "🤖"),
bubble_full_width=False,
type="messages" # Use new message format
)
with gr.Row():
with gr.Column(scale=10):
user_message = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
elem_id="chat-input",
lines=3
)
with gr.Row():
image_upload = gr.Image(
type="pil",
label="Image (optional)",
show_label=True,
scale=1
)
file_upload = gr.File(
label="Text File (optional)",
file_types=[".txt", ".md", ".py", ".js", ".html", ".css", ".json"],
scale=1
)
submit_btn = gr.Button("Send", scale=1, variant="primary")
with gr.Column(scale=2):
with gr.Accordion("Model Selection", open=True):
using_vision = gr.Checkbox(label="Using image", value=False)
model_selector = gr.Dropdown(
choices=[name for name, _, _ in text_models],
value=text_models[0][0],
label="Select Model",
elem_id="model-selector"
)
context_info = gr.Markdown(value=f"Context: {text_models[0][2]:,} tokens")
with gr.Accordion("Parameters", open=False):
with gr.Group():
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Higher = more creative, Lower = more deterministic"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=1.0,
step=0.1,
label="Top P",
info="Controls token diversity"
)
max_tokens = gr.Slider(
minimum=100,
maximum=8000,
value=1000,
step=100,
label="Max Tokens",
info="Maximum length of the response"
)
use_streaming = gr.Checkbox(
label="Stream Response",
value=True,
info="Show response as it's generated"
)
with gr.Accordion("Tips", open=False):
gr.Markdown("""
* Select a vision-capable model for images
* Upload text files to include their content
* Check model context window sizes
* Adjust temperature for creativity level
* Top P controls diversity of responses
""")
# Define events
def update_model_selector(use_vision):
if use_vision:
return (
gr.Dropdown(choices=[name for name, _, _ in vision_models], value=vision_models[0][0]),
f"Context: {vision_models[0][2]:,} tokens"
)
else:
return (
gr.Dropdown(choices=[name for name, _, _ in text_models], value=text_models[0][0]),
f"Context: {text_models[0][2]:,} tokens"
)
def update_context_info(model_name):
# Extract context size from model name
for name, _, context_size in text_models:
if name == model_name:
return f"Context: {context_size:,} tokens"
for name, _, context_size in vision_models:
if name == model_name:
return f"Context: {context_size:,} tokens"
return "Context size unknown"
using_vision.change(
fn=update_model_selector,
inputs=using_vision,
outputs=[model_selector, context_info]
)
model_selector.change(
fn=update_context_info,
inputs=model_selector,
outputs=context_info
)
# Submit function
def on_submit(message, history, model, image, file, temp, top_p_val, max_tok, stream):
if not message and not image and not file:
return "", history
return "", process_message_stream(
message,
history,
model,
image,
file.name if file else None,
temperature=temp,
top_p=top_p_val,
max_tokens=max_tok,
stream=stream
)
# Set up submission events
submit_btn.click(
on_submit,
inputs=[
user_message, chatbot, model_selector,
image_upload, file_upload,
temperature, top_p, max_tokens, use_streaming
],
outputs=[user_message, chatbot]
)
user_message.submit(
on_submit,
inputs=[
user_message, chatbot, model_selector,
image_upload, file_upload,
temperature, top_p, max_tokens, use_streaming
],
outputs=[user_message, chatbot]
)
# Define FastAPI endpoint
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
class GenerateRequest(BaseModel):
message: str
model: str = None
image_data: str = None
@app.post("/api/generate")
async def api_generate(request: GenerateRequest):
"""API endpoint for generating responses"""
try:
message = request.message
model_name = request.model
image_data = request.image_data
# Process image if provided
image = None
if image_data:
try:
# Decode base64 image
image_bytes = base64.b64decode(image_data)
image = Image.open(BytesIO(image_bytes))
except Exception as e:
return JSONResponse(
status_code=400,
content={"error": f"Image processing error: {str(e)}"}
)
# Generate response
try:
# Setup headers and URL
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces",
}
url = "https://openrouter.ai/api/v1/chat/completions"
# Get model_id from model_name
model_id = None
if model_name:
for _, mid, _ in text_models + vision_models:
if model_name in mid or model_name == mid:
model_id = mid
break
if not model_id:
model_id = text_models[0][1]
# Build messages
messages = []
if image:
# Image processing for vision models
base64_image = encode_image(image)
content = [
{"type": "text", "text": message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": content})
else:
messages.append({"role": "user", "content": message})
# Build request data
data = {
"model": model_id,
"messages": messages,
"temperature": 0.7
}
# Make API call
response = requests.post(url, headers=headers, json=data)
response.raise_for_status()
# Parse response
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
return {"response": reply}
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": f"Error generating response: {str(e)}"}
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": f"Server error: {str(e)}"}
)
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Mount Gradio app
import gradio as gr
app = gr.mount_gradio_app(app, demo, path="/")
# Start the app
if __name__ == "__main__":
# Use 'uvicorn' directly in HF Spaces
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |