File size: 16,568 Bytes
a13c2bb c96734b 1ca78b8 5e307e7 a13c2bb 5e307e7 c96734b a13c2bb 1ca78b8 a13c2bb 1ca78b8 a13c2bb 25aa6b5 a13c2bb 1ca78b8 a13c2bb 5e307e7 a13c2bb 5e307e7 a13c2bb 5e307e7 a13c2bb 5e307e7 a13c2bb 5e307e7 a13c2bb 1ca78b8 5e307e7 1ca78b8 a13c2bb 1ca78b8 5e307e7 a13c2bb 5e307e7 a13c2bb 5e307e7 a13c2bb 1ca78b8 5e307e7 1ca78b8 a13c2bb 1ca78b8 5e307e7 a13c2bb 5e307e7 a13c2bb 1ca78b8 a13c2bb 1ca78b8 a13c2bb 5e307e7 a13c2bb 5e307e7 a13c2bb 5e307e7 a13c2bb 1ca78b8 a13c2bb 82deaf2 a13c2bb 5e307e7 a13c2bb c96734b 82deaf2 c96734b 82deaf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import os
import base64
import gradio as gr
import requests
import json
from io import BytesIO
from PIL import Image
import time
# Get API key from environment variable for security
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model information
free_models = [
("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 0, 0, 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 0, 0, 1048576),
("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 0, 0, 1048576),
("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 0, 0, 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 0, 0, 1000000),
("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 0, 0, 163840),
("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 0, 0, 163840),
("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-chat-v3-0324:free", 0, 0, 131072),
("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 0, 0, 131072),
("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 0, 0, 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 0, 0, 131072),
("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 0, 0, 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 0, 0, 131072),
("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 0, 0, 131072),
("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 0, 0, 128000),
("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 0, 0, 96000),
("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 0, 0, 96000),
("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 0, 0, 64000),
("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 0, 0, 64000),
("Qwen: Qwen2.5-VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 0, 0, 64000),
("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 0, 0, 40960),
("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 0, 0, 40000),
("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 0, 0, 40000),
("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 0, 0, 32768),
("Qwerky 72b (free)", "featherless/qwerky-72b:free", 0, 0, 32768),
("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 0, 0, 32768),
("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 0, 0, 32768),
("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 0, 0, 32768),
("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 0, 0, 32768),
("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 0, 0, 32768),
("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 0, 0, 32768),
("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 0, 0, 32768),
("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 0, 0, 32768),
("Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 0, 0, 32768),
("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 0, 0, 20000),
("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 0, 0, 16384),
("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 0, 0, 16000),
("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 0, 0, 8192),
("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 0, 0, 8192),
("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 0, 0, 8192),
("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 0, 0, 8192),
("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 0, 0, 8192),
("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 0, 0, 8192),
("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 0, 0, 8192),
("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 0, 0, 8192),
("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 0, 0, 8000),
("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 0, 0, 4096),
("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 0, 0, 4096),
("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 0, 0, 4096),
("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 0, 0, 4096),
("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 0, 0, 4096),
]
# Filter for vision models
vision_model_ids = [
"meta-llama/llama-3.2-11b-vision-instruct:free",
"qwen/qwen2.5-vl-72b-instruct:free",
"qwen/qwen2.5-vl-3b-instruct:free",
"qwen/qwen2.5-vl-32b-instruct:free",
"qwen/qwen-2.5-vl-7b-instruct:free",
"google/gemini-2.0-pro-exp-02-05:free",
"google/gemini-2.5-pro-exp-03-25:free"
]
# Prefilter vision models
vision_models = [(name, model_id) for name, model_id, _, _, _ in free_models if model_id in vision_model_ids]
text_models = [(name, model_id) for name, model_id, _, _, _ in free_models]
def encode_image(image):
"""Convert PIL Image to base64 string"""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def process_message_stream(message, chat_history, model_name, uploaded_image=None):
"""Process message and stream the model response"""
model_id = next((model_id for name, model_id, _, _, _ in free_models if name == model_name), text_models[0][1])
# Check if API key is set
if not OPENROUTER_API_KEY:
yield "Please set your OpenRouter API key in the environment variables.", chat_history
return
# Setup headers and URL
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces/cstr/CrispChat", # Replace with your actual space URL in production
}
url = "https://openrouter.ai/api/v1/chat/completions"
# Build message content
messages = []
# Add chat history
for human_msg, ai_msg in chat_history:
messages.append({"role": "user", "content": human_msg})
messages.append({"role": "assistant", "content": ai_msg})
# Add current message
if uploaded_image:
# Image processing for vision models
base64_image = encode_image(uploaded_image)
content = [
{"type": "text", "text": message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": content})
else:
messages.append({"role": "user", "content": message})
# Build request data
data = {
"model": model_id,
"messages": messages,
"stream": True,
"temperature": 0.7
}
try:
# Create a new message pair in the chat history
chat_history.append((message, ""))
full_response = ""
# Make streaming API call
with requests.post(url, headers=headers, json=data, stream=True) as response:
response.raise_for_status()
buffer = ""
for chunk in response.iter_content(chunk_size=1024, decode_unicode=False):
if chunk:
buffer += chunk.decode('utf-8')
while True:
line_end = buffer.find('\n')
if line_end == -1:
break
line = buffer[:line_end].strip()
buffer = buffer[line_end + 1:]
if line.startswith('data: '):
data = line[6:]
if data == '[DONE]':
break
try:
data_obj = json.loads(data)
delta_content = data_obj["choices"][0]["delta"].get("content", "")
if delta_content:
full_response += delta_content
# Update the last assistant message
chat_history[-1] = (message, full_response)
yield full_response, chat_history
except json.JSONDecodeError:
pass
return full_response, chat_history
except Exception as e:
error_msg = f"Error: {str(e)}"
chat_history[-1] = (message, error_msg)
yield error_msg, chat_history
# Create a nice CSS theme
css = """
.gradio-container {
font-family: 'Segoe UI', Arial, sans-serif;
}
#chat-message {
min-height: 100px;
}
#model-selector {
max-width: 100%;
}
.app-header {
text-align: center;
margin-bottom: 10px;
}
.app-header h1 {
font-weight: 700;
color: #2C3E50;
}
.app-header p {
color: #7F8C8D;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div class="app-header">
<h1>🔆 CrispChat</h1>
<p>Chat with AI models - supports text and images</p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_share_button=False,
elem_id="chatbot",
layout="panel",
type="messages" # Use new message format
)
with gr.Row():
user_message = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
elem_id="chat-message",
scale=10
)
image_upload = gr.Image(
type="pil",
label="Image Upload (optional)",
show_label=False,
scale=2
)
submit_btn = gr.Button("Send", scale=1, variant="primary")
with gr.Column(scale=1):
with gr.Accordion("Model Selection", open=True):
using_vision = gr.Checkbox(label="Using image", value=False)
model_selector = gr.Dropdown(
choices=[name for name, _ in text_models],
value=text_models[0][0],
label="Select Model",
elem_id="model-selector"
)
with gr.Accordion("Tips", open=True):
gr.Markdown("""
* For best results with images, select a vision-capable model
* Text models can handle up to 32k tokens
* Try different models for different tasks
* API output is in Markdown format for code highlighting
""")
with gr.Accordion("API", open=False):
api_url = gr.Textbox(
value="https://cstr-crispchat.hf.space/api/generate",
label="API Endpoint",
interactive=False
)
api_docs = gr.Markdown("""
```json
POST /api/generate
{
"message": "Your message here",
"model": "model-id-here",
"image_data": "optional-base64-encoded-image"
}
```
""")
# Define events
def update_model_selector(use_vision):
if use_vision:
return gr.Dropdown(choices=[name for name, _ in vision_models], value=vision_models[0][0])
else:
return gr.Dropdown(choices=[name for name, _ in text_models], value=text_models[0][0])
using_vision.change(
fn=update_model_selector,
inputs=using_vision,
outputs=model_selector
)
# Submit function
def on_submit(message, history, model, image):
if not message and not image:
return "", history
return "", process_message_stream(message, history, model, image)
# Set up submission events
submit_btn.click(
on_submit,
inputs=[user_message, chatbot, model_selector, image_upload],
outputs=[user_message, chatbot]
)
user_message.submit(
on_submit,
inputs=[user_message, chatbot, model_selector, image_upload],
outputs=[user_message, chatbot]
)
# API endpoint for external access
@demo.queue()
def api_generate(message, model=None, image_data=None):
"""API endpoint for generating responses"""
model_name = model or text_models[0][0]
# Process image if provided
image = None
if image_data:
try:
# Decode base64 image
image_bytes = base64.b64decode(image_data)
image = Image.open(BytesIO(image_bytes))
except Exception as e:
return {"error": f"Image processing error: {str(e)}"}
# Generate response
try:
# Setup headers and URL
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces",
}
url = "https://openrouter.ai/api/v1/chat/completions"
# Get model_id from model_name
model_id = next((model_id for name, model_id, _, _, _ in free_models if name == model_name), None)
if not model_id and model:
# Check if model parameter is a direct model ID
model_id = model
if not model_id:
model_id = text_models[0][1]
# Build messages
messages = []
if image:
# Image processing for vision models
base64_image = encode_image(image)
content = [
{"type": "text", "text": message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": content})
else:
messages.append({"role": "user", "content": message})
# Build request data
data = {
"model": model_id,
"messages": messages,
"temperature": 0.7
}
# Make API call
response = requests.post(url, headers=headers, json=data)
response.raise_for_status()
# Parse response
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
return {"response": reply}
except Exception as e:
return {"error": f"Error generating response: {str(e)}"}
demo.queue()
demo.launch(share=False)
if __name__ == "__main__":
# Remove or comment out demo.launch() here if you added it above
pass |