File size: 37,277 Bytes
a13c2bb 9dba8e1 1ca78b8 5e9023b 9dba8e1 5e9023b c96734b 9dba8e1 9918749 a13c2bb 1ca78b8 9dba8e1 9918749 5e9023b 9dba8e1 37f5ab3 9dba8e1 37f5ab3 5e9023b 9dba8e1 37f5ab3 5e9023b 9dba8e1 37f5ab3 5e9023b 9dba8e1 37f5ab3 5e9023b 9dba8e1 37f5ab3 5e9023b 9dba8e1 37f5ab3 a13c2bb 1ca78b8 37f5ab3 9dba8e1 37f5ab3 81d1619 5e9023b 9dba8e1 5e9023b 9dba8e1 5e9023b 9dba8e1 5e9023b 9dba8e1 5e9023b 9dba8e1 5e9023b 37f5ab3 9dba8e1 37f5ab3 9dba8e1 37f5ab3 9dba8e1 37f5ab3 5e9023b 37f5ab3 9dba8e1 5e9023b 37f5ab3 5e9023b 37f5ab3 9dba8e1 37f5ab3 81d1619 9dba8e1 5e9023b 37f5ab3 9918749 5e9023b 9918749 a13c2bb 5e9023b 32ae536 81d1619 9144903 37f5ab3 5e9023b 9918749 5e9023b 9144903 9918749 1ca78b8 5e9023b 37f5ab3 5e9023b 37f5ab3 5e9023b 9dba8e1 37f5ab3 5e9023b cef7f39 25f51d0 9918749 25f51d0 5e9023b 37f5ab3 cef7f39 25f51d0 5e9023b 9dba8e1 5e9023b 9918749 81d1619 5e9023b 25f51d0 5e9023b a13c2bb 5e9023b 81d1619 9918749 32ae536 37f5ab3 9dba8e1 37f5ab3 3e6631d 9dba8e1 5e9023b 37f5ab3 5e9023b 9dba8e1 81d1619 9dba8e1 5e9023b 81d1619 5e9023b 37f5ab3 5e9023b 37f5ab3 9dba8e1 37f5ab3 81d1619 5e9023b 37f5ab3 5e9023b 37f5ab3 9dba8e1 37f5ab3 9dba8e1 5e9023b 9dba8e1 5e9023b 9dba8e1 37f5ab3 9dba8e1 37f5ab3 9dba8e1 5e9023b 9dba8e1 5e9023b 9dba8e1 32ae536 9dba8e1 32ae536 9dba8e1 32ae536 9dba8e1 32ae536 82deaf2 9dba8e1 9918749 c96734b 9918749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
import os
import logging
import json
import base64
from io import BytesIO
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Graceful imports with fallbacks
try:
import gradio as gr
except ImportError:
logger.error("Gradio not found. Please install with 'pip install gradio'")
raise
try:
import requests
except ImportError:
logger.error("Requests not found. Please install with 'pip install requests'")
raise
# Optional libraries with fallbacks
try:
from PIL import Image
PIL_AVAILABLE = True
except ImportError:
logger.warning("PIL not found. Image processing functionality will be limited.")
PIL_AVAILABLE = False
# PDF processing
PDF_AVAILABLE = False
try:
import PyPDF2
PDF_AVAILABLE = True
except ImportError:
logger.warning("PyPDF2 not found. Attempting to use pdfminer.six as fallback...")
try:
from pdfminer.high_level import extract_text as pdf_extract_text
PDF_AVAILABLE = True
# Create a wrapper to mimic PyPDF2 functionality
def extract_text_from_pdf(file_path):
return pdf_extract_text(file_path)
except ImportError:
logger.warning("No PDF processing libraries found. PDF support will be disabled.")
# Markdown processing
MD_AVAILABLE = False
try:
import markdown
MD_AVAILABLE = True
except ImportError:
logger.warning("Markdown not found. Attempting to use markdownify as fallback...")
try:
from markdownify import markdownify as md
MD_AVAILABLE = True
# Create a wrapper for markdown
def convert_markdown(text):
return md(text)
except ImportError:
logger.warning("No Markdown processing libraries found. Markdown support will be limited.")
# API key
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model list with context sizes - organized by capability
MODELS = [
# Vision Models
{"category": "Vision Models", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("Qwen: Qwen2.5 VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
]},
# Largest Context Models
{"category": "Largest Context (500K+)", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
]},
# High-performance Models
{"category": "High Performance", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
]},
# Mid-size Models
{"category": "Mid-size Models", "models": [
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Meta: Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
]},
# Smaller Models
{"category": "Smaller Models", "models": [
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
]},
# Sorting Options
{"category": "Sort By", "models": [
("Context: High to Low", "sort_context_desc", 0),
("Context: Low to High", "sort_context_asc", 0),
("Newest", "sort_newest", 0),
("Throughput: High to Low", "sort_throughput", 0),
("Latency: Low to High", "sort_latency", 0),
]},
]
# Flatten model list for easy searching
ALL_MODELS = []
for category in MODELS:
if category["category"] != "Sort By": # Skip the sorting options
for model in category["models"]:
if model not in ALL_MODELS:
ALL_MODELS.append(model)
# Sort models by context size (descending) by default
ALL_MODELS.sort(key=lambda x: x[2], reverse=True)
def format_to_message_dict(history):
"""Convert history to proper message format"""
messages = []
for pair in history:
if len(pair) == 2:
human, ai = pair
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
return messages
def encode_image_to_base64(image_path):
"""Encode an image file to base64 string with fallback methods"""
try:
if isinstance(image_path, str): # File path as string
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension in ["webp", "gif"]:
mime_type = f"image/{file_extension}"
else:
mime_type = "image/jpeg" # Default fallback
return f"data:{mime_type};base64,{encoded_string}"
elif PIL_AVAILABLE: # Pillow Image object
buffered = BytesIO()
# Handle if it's a PIL Image or file-like object
try:
image_path.save(buffered, format="PNG")
except AttributeError:
if hasattr(image_path, 'read'):
# It's a file-like object but not a PIL Image
buffered.write(image_path.read())
else:
raise
encoded_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
return f"data:image/png;base64,{encoded_string}"
else:
logger.error("Cannot process image: PIL not available and input is not a file path")
return None
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
return None
def extract_text_from_file(file_path):
"""Extract text from various file types with fallbacks"""
try:
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'pdf':
if PDF_AVAILABLE:
if 'PyPDF2' in globals():
text = ""
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n\n"
return text
else:
# Use pdfminer fallback
return extract_text_from_pdf(file_path)
else:
return "PDF support not available. Please install PyPDF2 or pdfminer.six."
elif file_extension == 'md':
if MD_AVAILABLE:
with open(file_path, 'r', encoding='utf-8') as file:
md_text = file.read()
return md_text
else:
# Simple fallback - just read the file
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_extension == 'txt':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
else:
return f"Unsupported file type: {file_extension}"
except Exception as e:
logger.error(f"Error extracting text from file: {str(e)}")
return f"Error processing file: {str(e)}"
def prepare_message_with_media(text, images=None, documents=None):
"""Prepare a message with text, images, and document content"""
# If no media, return text only
if not images and not documents:
return text
# Start with text content
if documents and len(documents) > 0:
# If there are documents, append their content to the text
document_texts = []
for doc in documents:
if doc is None:
continue
doc_text = extract_text_from_file(doc)
if doc_text:
document_texts.append(doc_text)
# Add document content to text
if document_texts:
if not text:
text = "Please analyze these documents:"
else:
text = f"{text}\n\nDocument content:\n\n"
text += "\n\n".join(document_texts)
# If no images, return text only
if not images:
return text
# If we have images, create a multimodal content array
content = [{"type": "text", "text": text or "Please analyze these images:"}]
# Add images if any
if images:
for img in images:
if img is None:
continue
encoded_image = encode_image_to_base64(img)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
return content
def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p, frequency_penalty,
presence_penalty, images, documents, reasoning_effort):
"""Enhanced AI query function with comprehensive options and fallbacks"""
if not message.strip() and not images and not documents:
return chatbot, ""
# Check if this is a sorting option
if model_choice.startswith("Sort By"):
return chatbot + [[message, "Please select a model to chat with first."]], ""
# Get model ID and context size
model_id = None
context_size = 0
for name, model_id_value, ctx_size in ALL_MODELS:
if name == model_choice:
model_id = model_id_value
context_size = ctx_size
break
if model_id is None:
logger.error(f"Model not found: {model_choice}")
return chatbot + [[message, "Error: Model not found"]], ""
# Create messages from chatbot history
messages = format_to_message_dict(chatbot)
# Prepare message with images and documents if any
content = prepare_message_with_media(message, images, documents)
# Add current message
messages.append({"role": "user", "content": content})
# Call API
try:
logger.info(f"Sending request to model: {model_id}")
# Build the payload with all parameters
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
}
# Add optional parameters if they have non-default values
if top_p < 1.0:
payload["top_p"] = top_p
if frequency_penalty != 0:
payload["frequency_penalty"] = frequency_penalty
if presence_penalty != 0:
payload["presence_penalty"] = presence_penalty
# Add reasoning if selected
if reasoning_effort != "none":
payload["reasoning"] = {
"effort": reasoning_effort
}
logger.info(f"Request payload: {json.dumps(payload, default=str)}")
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces"
},
json=payload,
timeout=120 # Longer timeout for document processing
)
logger.info(f"Response status: {response.status_code}")
response_text = response.text
logger.debug(f"Response body: {response_text}")
if response.status_code == 200:
result = response.json()
ai_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
chatbot = chatbot + [[message, ai_response]]
# Log token usage if available
if "usage" in result:
logger.info(f"Token usage: {result['usage']}")
else:
error_message = f"Error: Status code {response.status_code}\n\nResponse: {response_text}"
chatbot = chatbot + [[message, error_message]]
except Exception as e:
logger.error(f"Exception during API call: {str(e)}")
chatbot = chatbot + [[message, f"Error: {str(e)}"]]
return chatbot, ""
def clear_chat():
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, "none"
def apply_sort(sort_option):
"""Apply sorting option to models list"""
if sort_option == "sort_context_desc":
# Sort by context size (high to low)
sorted_models = sorted(ALL_MODELS, key=lambda x: x[2], reverse=True)
elif sort_option == "sort_context_asc":
# Sort by context size (low to high)
sorted_models = sorted(ALL_MODELS, key=lambda x: x[2])
elif sort_option == "sort_newest":
# This would need a proper timestamp, using a rough approximation
# Models with "Experimental" in the name come first as they're likely newer
sorted_models = sorted(ALL_MODELS, key=lambda x: "Experimental" not in x[0])
elif sort_option == "sort_throughput" or sort_option == "sort_latency":
# These would need actual performance metrics
# For now, use model size as a rough proxy (smaller models generally have higher throughput and lower latency)
# Rough heuristic: models with smaller numbers in their names might be smaller
sorted_models = sorted(ALL_MODELS, key=lambda x: sum(int(s) for s in x[0] if s.isdigit()))
else:
# Default to context size sorting
sorted_models = sorted(ALL_MODELS, key=lambda x: x[2], reverse=True)
return sorted_models
def filter_models(search_term):
"""Filter models based on search term"""
if not search_term:
return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])
filtered_models = [model[0] for model in ALL_MODELS if search_term.lower() in model[0].lower()]
if filtered_models:
return gr.Dropdown.update(choices=filtered_models, value=filtered_models[0])
else:
return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])
def get_model_info(model_name):
"""Get model information by name"""
for model in ALL_MODELS:
if model[0] == model_name:
return model
return None
def update_context_display(model_name):
"""Update the context size display based on the selected model"""
model_info = get_model_info(model_name)
if model_info:
name, model_id, context_size = model_info
context_formatted = f"{context_size:,}"
return f"{context_formatted} tokens"
return "Unknown"
def update_models_from_sort(sort_option):
"""Update models list based on sorting option"""
for category in MODELS:
if category["category"] == "Sort By":
for option in category["models"]:
if option[0] == sort_option:
sort_key = option[1]
sorted_models = apply_sort(sort_key)
return gr.Dropdown.update(choices=[model[0] for model in sorted_models], value=sorted_models[0][0])
# Default sorting if option not found
return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])
# Create enhanced interface
with gr.Blocks(css="""
.context-size {
font-size: 0.9em;
color: #666;
margin-left: 10px;
}
footer { display: none !important; }
.model-selection-row {
display: flex;
align-items: center;
}
.parameter-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 10px;
}
""") as demo:
gr.Markdown("""
# Vision AI Chat
Chat with various AI vision models from OpenRouter with support for images and documents.
""")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_label=False,
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg")
)
with gr.Row():
message = gr.Textbox(
placeholder="Type your message here...",
label="Message",
lines=2
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("Send", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear Chat", variant="secondary")
with gr.Row():
# Image upload
with gr.Accordion("Upload Images", open=False):
images = gr.Gallery(
label="Uploaded Images",
show_label=True,
columns=4,
height="auto",
object_fit="contain"
)
image_upload_btn = gr.UploadButton(
label="Upload Images",
file_types=["image"],
file_count="multiple"
)
# Document upload
with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
documents = gr.File(
label="Uploaded Documents",
file_types=[".pdf", ".md", ".txt"],
file_count="multiple"
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Model Selection")
with gr.Row(elem_classes="model-selection-row"):
model_search = gr.Textbox(
placeholder="Search models...",
label="",
show_label=False
)
with gr.Row(elem_classes="model-selection-row"):
model_choice = gr.Dropdown(
[model[0] for model in ALL_MODELS],
value=ALL_MODELS[0][0],
label="Model"
)
context_display = gr.Textbox(
value=update_context_display(ALL_MODELS[0][0]),
label="Context",
interactive=False,
elem_classes="context-size"
)
# Model category selection
with gr.Accordion("Browse by Category", open=False):
model_categories = gr.Radio(
[category["category"] for category in MODELS],
label="Categories",
value=MODELS[0]["category"]
)
category_models = gr.Radio(
[model[0] for model in MODELS[0]["models"]],
label="Models in Category"
)
# Sort options
with gr.Accordion("Sort Models", open=False):
sort_options = gr.Radio(
["Context: High to Low", "Context: Low to High", "Newest",
"Throughput: High to Low", "Latency: Low to High"],
label="Sort By",
value="Context: High to Low"
)
with gr.Accordion("Generation Parameters", open=False):
with gr.Group(elem_classes="parameter-grid"):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.8,
step=0.1,
label="Top P"
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
presence_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Presence Penalty"
)
reasoning_effort = gr.Radio(
["none", "low", "medium", "high"],
value="none",
label="Reasoning Effort"
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Repetition Penalty"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top K"
)
min_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.05,
label="Min P"
)
with gr.Column():
seed = gr.Number(
value=0,
label="Seed (0 for random)",
precision=0
)
top_a = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.05,
label="Top A"
)
stream_output = gr.Checkbox(
label="Stream Output",
value=False
)
with gr.Row():
response_format = gr.Radio(
["default", "json_object"],
value="default",
label="Response Format"
)
gr.Markdown("""
* **json_object**: Forces the model to respond with valid JSON only.
* Only available on certain models - check model support on OpenRouter.
""")
# Custom instructing options
with gr.Accordion("Custom Instructions", open=False):
system_message = gr.Textbox(
placeholder="Enter a system message to guide the model's behavior...",
label="System Message",
lines=3
)
transforms = gr.CheckboxGroup(
["prompt_optimize", "prompt_distill", "prompt_compress"],
label="Prompt Transforms (OpenRouter specific)"
)
gr.Markdown("""
* **prompt_optimize**: Improve prompt for better responses.
* **prompt_distill**: Compress prompt to use fewer tokens without changing meaning.
* **prompt_compress**: Aggressively compress prompt to fit larger contexts.
""")
# Connect model search to dropdown filter
model_search.change(
fn=filter_models,
inputs=[model_search],
outputs=[model_choice]
)
# Update context display when model changes
model_choice.change(
fn=update_context_display,
inputs=[model_choice],
outputs=[context_display]
)
# Update model list when category changes
def update_category_models(category):
for cat in MODELS:
if cat["category"] == category:
return gr.Radio.update(choices=[model[0] for model in cat["models"]], value=cat["models"][0][0])
return gr.Radio.update(choices=[], value=None)
model_categories.change(
fn=update_category_models,
inputs=[model_categories],
outputs=[category_models]
)
# Update main model choice when category model is selected
category_models.change(
fn=lambda x: x,
inputs=[category_models],
outputs=[model_choice]
)
# Process uploaded images
def process_uploaded_images(files):
return [file.name for file in files]
image_upload_btn.upload(
fn=process_uploaded_images,
inputs=[image_upload_btn],
outputs=[images]
)
# Enhanced AI query function with all advanced parameters
def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p,
frequency_penalty, presence_penalty, repetition_penalty, top_k,
min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms):
"""Comprehensive AI query function with all parameters"""
if not message.strip() and not images and not documents:
return chatbot, ""
# Get model ID and context size
model_id = None
context_size = 0
for name, model_id_value, ctx_size in ALL_MODELS:
if name == model_choice:
model_id = model_id_value
context_size = ctx_size
break
if model_id is None:
logger.error(f"Model not found: {model_choice}")
return chatbot + [[message, "Error: Model not found"]], ""
# Create messages from chatbot history
messages = format_to_message_dict(chatbot)
# Add system message if provided
if system_message and system_message.strip():
# Insert at the beginning to override any existing system message
for i, msg in enumerate(messages):
if msg.get("role") == "system":
messages.pop(i)
break
messages.insert(0, {"role": "system", "content": system_message.strip()})
# Prepare message with images and documents if any
content = prepare_message_with_media(message, images, documents)
# Add current message
messages.append({"role": "user", "content": content})
# Call API
try:
logger.info(f"Sending request to model: {model_id}")
# Build the comprehensive payload with all parameters
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty,
"repetition_penalty": repetition_penalty if repetition_penalty != 1.0 else None,
"top_k": top_k,
"min_p": min_p if min_p > 0 else None,
"seed": seed if seed > 0 else None,
"top_a": top_a if top_a > 0 else None,
"stream": stream_output
}
# Add response format if not default
if response_format == "json_object":
payload["response_format"] = {"type": "json_object"}
# Add reasoning if selected
if reasoning_effort != "none":
payload["reasoning"] = {
"effort": reasoning_effort
}
# Add transforms if selected
if transforms:
payload["transforms"] = transforms
# Remove None values
payload = {k: v for k, v in payload.items() if v is not None}
logger.info(f"Request payload: {json.dumps(payload, default=str)}")
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces"
},
json=payload,
timeout=180, # Longer timeout for document processing and streaming
stream=stream_output
)
logger.info(f"Response status: {response.status_code}")
if stream_output and response.status_code == 200:
# Handle streaming response
chatbot = chatbot + [[message, ""]]
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
data = line[6:]
if data.strip() == '[DONE]':
break
try:
chunk = json.loads(data)
if "choices" in chunk and len(chunk["choices"]) > 0:
delta = chunk["choices"][0].get("delta", {})
if "content" in delta and delta["content"]:
chatbot[-1][1] += delta["content"]
yield chatbot, ""
except json.JSONDecodeError:
continue
return chatbot, ""
elif response.status_code == 200:
# Handle normal response
result = response.json()
ai_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
chatbot = chatbot + [[message, ai_response]]
# Log token usage if available
if "usage" in result:
logger.info(f"Token usage: {result['usage']}")
else:
response_text = response.text
logger.info(f"Error response body: {response_text}")
error_message = f"Error: Status code {response.status_code}\n\nResponse: {response_text}"
chatbot = chatbot + [[message, error_message]]
except Exception as e:
logger.error(f"Exception during API call: {str(e)}")
chatbot = chatbot + [[message, f"Error: {str(e)}"]]
return chatbot, ""
# Function to clear chat and reset parameters
def clear_chat():
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", []
# Set up events for the submit button
submit_btn.click(
fn=ask_ai,
inputs=[
message, chatbot, model_choice, temperature, max_tokens,
top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms
],
outputs=[chatbot, message]
)
# Set up events for message submission (pressing Enter)
message.submit(
fn=ask_ai,
inputs=[
message, chatbot, model_choice, temperature, max_tokens,
top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms
],
outputs=[chatbot, message]
)
# Set up events for the clear button
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[
chatbot, message, images, documents, temperature,
max_tokens, top_p, frequency_penalty, presence_penalty,
repetition_penalty, top_k, min_p, seed, top_a, stream_output,
response_format, reasoning_effort, system_message, transforms
]
)
# Add a model information section
with gr.Accordion("About Selected Model", open=False):
model_info_display = gr.HTML(
value="<p>Select a model to see details</p>"
)
# Update model info when model changes
def update_model_info(model_name):
model_info = get_model_info(model_name)
if model_info:
name, model_id, context_size = model_info
return f"""
<div class="model-info">
<h3>{name}</h3>
<p><strong>Model ID:</strong> {model_id}</p>
<p><strong>Context Size:</strong> {context_size:,} tokens</p>
<p><strong>Provider:</strong> {model_id.split('/')[0]}</p>
</div>
"""
return "<p>Model information not available</p>"
model_choice.change(
fn=update_model_info,
inputs=[model_choice],
outputs=[model_info_display]
)
# Add usage instructions
with gr.Accordion("Usage Instructions", open=False):
gr.Markdown("""
## Basic Usage
1. Type your message in the input box
2. Select a model from the dropdown
3. Click "Send" or press Enter
## Working with Files
- **Images**: Upload images to use with vision-capable models like Llama 3.2 Vision
- **Documents**: Upload PDF, Markdown, or text files to analyze their content
## Advanced Parameters
- **Temperature**: Controls randomness (higher = more creative, lower = more deterministic)
- **Max Tokens**: Maximum length of the response
- **Top P**: Nucleus sampling threshold (higher = consider more tokens)
- **Reasoning Effort**: Some models can show their reasoning process
## Tips
- For code generation, use models like Qwen Coder
- For visual tasks, choose vision-capable models
- For long context, check the context window size next to the model name
""")
# Add a footer with version info
footer_md = gr.Markdown("""
---
### OpenRouter AI Chat Interface v1.0
Built with ❤️ using Gradio and OpenRouter API | Context sizes shown next to model names
""")
# Launch directly with Gradio's built-in server
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |