File size: 37,277 Bytes
a13c2bb
9dba8e1
1ca78b8
5e9023b
9dba8e1
5e9023b
 
 
 
c96734b
9dba8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9918749
a13c2bb
1ca78b8
9dba8e1
9918749
5e9023b
9dba8e1
 
 
 
 
 
 
37f5ab3
9dba8e1
 
 
 
 
37f5ab3
5e9023b
9dba8e1
 
 
 
 
 
 
37f5ab3
5e9023b
9dba8e1
 
 
 
 
 
 
37f5ab3
5e9023b
9dba8e1
 
 
 
 
 
37f5ab3
5e9023b
9dba8e1
 
 
 
 
37f5ab3
5e9023b
9dba8e1
 
 
 
 
 
 
37f5ab3
a13c2bb
1ca78b8
37f5ab3
 
 
9dba8e1
 
 
 
 
 
 
37f5ab3
81d1619
 
 
 
 
 
 
 
 
 
 
 
5e9023b
9dba8e1
5e9023b
 
 
 
 
 
9dba8e1
5e9023b
9dba8e1
 
 
 
 
 
5e9023b
9dba8e1
 
 
 
 
 
 
 
 
 
 
5e9023b
 
9dba8e1
 
 
5e9023b
 
 
 
37f5ab3
9dba8e1
37f5ab3
 
 
 
9dba8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
37f5ab3
 
9dba8e1
 
 
 
 
 
 
 
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9023b
 
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dba8e1
5e9023b
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
5e9023b
 
 
37f5ab3
 
9dba8e1
37f5ab3
81d1619
 
9dba8e1
 
 
 
5e9023b
 
 
37f5ab3
9918749
 
5e9023b
9918749
a13c2bb
5e9023b
 
 
 
32ae536
81d1619
9144903
37f5ab3
 
5e9023b
9918749
5e9023b
9144903
9918749
1ca78b8
5e9023b
 
37f5ab3
5e9023b
 
 
 
37f5ab3
5e9023b
 
9dba8e1
 
 
 
 
 
 
 
 
 
37f5ab3
 
 
 
 
 
 
5e9023b
cef7f39
 
25f51d0
 
 
9918749
25f51d0
5e9023b
37f5ab3
cef7f39
25f51d0
5e9023b
 
 
9dba8e1
5e9023b
9918749
 
 
81d1619
5e9023b
 
 
 
25f51d0
5e9023b
 
a13c2bb
5e9023b
81d1619
9918749
32ae536
 
 
37f5ab3
 
9dba8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6631d
9dba8e1
 
 
 
 
 
 
 
 
 
 
 
 
5e9023b
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9023b
9dba8e1
81d1619
9dba8e1
5e9023b
81d1619
 
5e9023b
37f5ab3
 
 
 
 
 
5e9023b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f5ab3
9dba8e1
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d1619
5e9023b
 
 
 
37f5ab3
 
 
 
 
 
5e9023b
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dba8e1
 
 
 
 
 
 
 
 
37f5ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dba8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9023b
9dba8e1
 
 
 
 
 
 
 
5e9023b
9dba8e1
 
 
37f5ab3
9dba8e1
 
37f5ab3
9dba8e1
 
 
 
 
 
 
 
5e9023b
9dba8e1
 
5e9023b
9dba8e1
 
32ae536
9dba8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ae536
9dba8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ae536
 
9dba8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ae536
82deaf2
9dba8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9918749
c96734b
9918749
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
import os
import logging
import json
import base64
from io import BytesIO

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Graceful imports with fallbacks
try:
    import gradio as gr
except ImportError:
    logger.error("Gradio not found. Please install with 'pip install gradio'")
    raise

try:
    import requests
except ImportError:
    logger.error("Requests not found. Please install with 'pip install requests'")
    raise

# Optional libraries with fallbacks
try:
    from PIL import Image
    PIL_AVAILABLE = True
except ImportError:
    logger.warning("PIL not found. Image processing functionality will be limited.")
    PIL_AVAILABLE = False

# PDF processing
PDF_AVAILABLE = False
try:
    import PyPDF2
    PDF_AVAILABLE = True
except ImportError:
    logger.warning("PyPDF2 not found. Attempting to use pdfminer.six as fallback...")
    try:
        from pdfminer.high_level import extract_text as pdf_extract_text
        PDF_AVAILABLE = True
        
        # Create a wrapper to mimic PyPDF2 functionality
        def extract_text_from_pdf(file_path):
            return pdf_extract_text(file_path)
    except ImportError:
        logger.warning("No PDF processing libraries found. PDF support will be disabled.")

# Markdown processing
MD_AVAILABLE = False
try:
    import markdown
    MD_AVAILABLE = True
except ImportError:
    logger.warning("Markdown not found. Attempting to use markdownify as fallback...")
    try:
        from markdownify import markdownify as md
        MD_AVAILABLE = True
        
        # Create a wrapper for markdown
        def convert_markdown(text):
            return md(text)
    except ImportError:
        logger.warning("No Markdown processing libraries found. Markdown support will be limited.")

# API key
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")

# Model list with context sizes - organized by capability
MODELS = [
    # Vision Models
    {"category": "Vision Models", "models": [
        ("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
        ("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
        ("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
        ("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
        ("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
        ("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
        ("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
        ("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
        ("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
        ("Qwen: Qwen2.5 VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
        ("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
        ("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
    ]},
    
    # Largest Context Models
    {"category": "Largest Context (500K+)", "models": [
        ("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
        ("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
        ("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
        ("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
        ("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
    ]},
    
    # High-performance Models
    {"category": "High Performance", "models": [
        ("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
        ("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
        ("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
        ("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
        ("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
    ]},
    
    # Mid-size Models
    {"category": "Mid-size Models", "models": [
        ("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
        ("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
        ("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
        ("Meta: Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
    ]},
    
    # Smaller Models
    {"category": "Smaller Models", "models": [
        ("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
        ("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
        ("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
    ]},
    
    # Sorting Options
    {"category": "Sort By", "models": [
        ("Context: High to Low", "sort_context_desc", 0),
        ("Context: Low to High", "sort_context_asc", 0),
        ("Newest", "sort_newest", 0),
        ("Throughput: High to Low", "sort_throughput", 0),
        ("Latency: Low to High", "sort_latency", 0),
    ]},
]

# Flatten model list for easy searching
ALL_MODELS = []
for category in MODELS:
    if category["category"] != "Sort By":  # Skip the sorting options
        for model in category["models"]:
            if model not in ALL_MODELS:
                ALL_MODELS.append(model)

# Sort models by context size (descending) by default
ALL_MODELS.sort(key=lambda x: x[2], reverse=True)

def format_to_message_dict(history):
    """Convert history to proper message format"""
    messages = []
    for pair in history:
        if len(pair) == 2:
            human, ai = pair
            if human:
                messages.append({"role": "user", "content": human})
            if ai:
                messages.append({"role": "assistant", "content": ai})
    return messages

def encode_image_to_base64(image_path):
    """Encode an image file to base64 string with fallback methods"""
    try:
        if isinstance(image_path, str):  # File path as string
            with open(image_path, "rb") as image_file:
                encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
                file_extension = image_path.split('.')[-1].lower()
                mime_type = f"image/{file_extension}"
                if file_extension in ["jpg", "jpeg"]:
                    mime_type = "image/jpeg"
                elif file_extension == "png":
                    mime_type = "image/png"
                elif file_extension in ["webp", "gif"]:
                    mime_type = f"image/{file_extension}"
                else:
                    mime_type = "image/jpeg"  # Default fallback
                return f"data:{mime_type};base64,{encoded_string}"
        elif PIL_AVAILABLE:  # Pillow Image object
            buffered = BytesIO()
            # Handle if it's a PIL Image or file-like object
            try:
                image_path.save(buffered, format="PNG")
            except AttributeError:
                if hasattr(image_path, 'read'):
                    # It's a file-like object but not a PIL Image
                    buffered.write(image_path.read())
                else:
                    raise
            encoded_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
            return f"data:image/png;base64,{encoded_string}"
        else:
            logger.error("Cannot process image: PIL not available and input is not a file path")
            return None
    except Exception as e:
        logger.error(f"Error encoding image: {str(e)}")
        return None

def extract_text_from_file(file_path):
    """Extract text from various file types with fallbacks"""
    try:
        file_extension = file_path.split('.')[-1].lower()
        
        if file_extension == 'pdf':
            if PDF_AVAILABLE:
                if 'PyPDF2' in globals():
                    text = ""
                    with open(file_path, 'rb') as file:
                        pdf_reader = PyPDF2.PdfReader(file)
                        for page_num in range(len(pdf_reader.pages)):
                            page = pdf_reader.pages[page_num]
                            text += page.extract_text() + "\n\n"
                    return text
                else:
                    # Use pdfminer fallback
                    return extract_text_from_pdf(file_path)
            else:
                return "PDF support not available. Please install PyPDF2 or pdfminer.six."
        
        elif file_extension == 'md':
            if MD_AVAILABLE:
                with open(file_path, 'r', encoding='utf-8') as file:
                    md_text = file.read()
                    return md_text
            else:
                # Simple fallback - just read the file
                with open(file_path, 'r', encoding='utf-8') as file:
                    return file.read()
        
        elif file_extension == 'txt':
            with open(file_path, 'r', encoding='utf-8') as file:
                return file.read()
                
        else:
            return f"Unsupported file type: {file_extension}"
            
    except Exception as e:
        logger.error(f"Error extracting text from file: {str(e)}")
        return f"Error processing file: {str(e)}"

def prepare_message_with_media(text, images=None, documents=None):
    """Prepare a message with text, images, and document content"""
    # If no media, return text only
    if not images and not documents:
        return text
    
    # Start with text content
    if documents and len(documents) > 0:
        # If there are documents, append their content to the text
        document_texts = []
        for doc in documents:
            if doc is None:
                continue
            doc_text = extract_text_from_file(doc)
            if doc_text:
                document_texts.append(doc_text)
        
        # Add document content to text
        if document_texts:
            if not text:
                text = "Please analyze these documents:"
            else:
                text = f"{text}\n\nDocument content:\n\n"
            
            text += "\n\n".join(document_texts)
            
        # If no images, return text only
        if not images:
            return text
    
    # If we have images, create a multimodal content array
    content = [{"type": "text", "text": text or "Please analyze these images:"}]
    
    # Add images if any
    if images:
        for img in images:
            if img is None:
                continue
            
            encoded_image = encode_image_to_base64(img)
            if encoded_image:
                content.append({
                    "type": "image_url",
                    "image_url": {"url": encoded_image}
                })
    
    return content

def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p, frequency_penalty, 
           presence_penalty, images, documents, reasoning_effort):
    """Enhanced AI query function with comprehensive options and fallbacks"""
    if not message.strip() and not images and not documents:
        return chatbot, ""
    
    # Check if this is a sorting option
    if model_choice.startswith("Sort By"):
        return chatbot + [[message, "Please select a model to chat with first."]], ""
    
    # Get model ID and context size
    model_id = None
    context_size = 0
    for name, model_id_value, ctx_size in ALL_MODELS:
        if name == model_choice:
            model_id = model_id_value
            context_size = ctx_size
            break
    
    if model_id is None:
        logger.error(f"Model not found: {model_choice}")
        return chatbot + [[message, "Error: Model not found"]], ""
    
    # Create messages from chatbot history
    messages = format_to_message_dict(chatbot)
    
    # Prepare message with images and documents if any
    content = prepare_message_with_media(message, images, documents)
    
    # Add current message
    messages.append({"role": "user", "content": content})
    
    # Call API
    try:
        logger.info(f"Sending request to model: {model_id}")
        
        # Build the payload with all parameters
        payload = {
            "model": model_id,
            "messages": messages,
            "temperature": temperature,
            "max_tokens": max_tokens,
        }
        
        # Add optional parameters if they have non-default values
        if top_p < 1.0:
            payload["top_p"] = top_p
        
        if frequency_penalty != 0:
            payload["frequency_penalty"] = frequency_penalty
            
        if presence_penalty != 0:
            payload["presence_penalty"] = presence_penalty
        
        # Add reasoning if selected
        if reasoning_effort != "none":
            payload["reasoning"] = {
                "effort": reasoning_effort
            }
        
        logger.info(f"Request payload: {json.dumps(payload, default=str)}")
        
        response = requests.post(
            "https://openrouter.ai/api/v1/chat/completions",
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {OPENROUTER_API_KEY}",
                "HTTP-Referer": "https://huggingface.co/spaces"
            },
            json=payload,
            timeout=120  # Longer timeout for document processing
        )
        
        logger.info(f"Response status: {response.status_code}")
        
        response_text = response.text
        logger.debug(f"Response body: {response_text}")
        
        if response.status_code == 200:
            result = response.json()
            ai_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
            chatbot = chatbot + [[message, ai_response]]
            
            # Log token usage if available
            if "usage" in result:
                logger.info(f"Token usage: {result['usage']}")
        else:
            error_message = f"Error: Status code {response.status_code}\n\nResponse: {response_text}"
            chatbot = chatbot + [[message, error_message]]
    except Exception as e:
        logger.error(f"Exception during API call: {str(e)}")
        chatbot = chatbot + [[message, f"Error: {str(e)}"]]
    
    return chatbot, ""

def clear_chat():
    return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, "none"

def apply_sort(sort_option):
    """Apply sorting option to models list"""
    if sort_option == "sort_context_desc":
        # Sort by context size (high to low)
        sorted_models = sorted(ALL_MODELS, key=lambda x: x[2], reverse=True)
    elif sort_option == "sort_context_asc":
        # Sort by context size (low to high)
        sorted_models = sorted(ALL_MODELS, key=lambda x: x[2])
    elif sort_option == "sort_newest":
        # This would need a proper timestamp, using a rough approximation
        # Models with "Experimental" in the name come first as they're likely newer
        sorted_models = sorted(ALL_MODELS, key=lambda x: "Experimental" not in x[0])
    elif sort_option == "sort_throughput" or sort_option == "sort_latency":
        # These would need actual performance metrics
        # For now, use model size as a rough proxy (smaller models generally have higher throughput and lower latency)
        # Rough heuristic: models with smaller numbers in their names might be smaller
        sorted_models = sorted(ALL_MODELS, key=lambda x: sum(int(s) for s in x[0] if s.isdigit()))
    else:
        # Default to context size sorting
        sorted_models = sorted(ALL_MODELS, key=lambda x: x[2], reverse=True)
    
    return sorted_models

def filter_models(search_term):
    """Filter models based on search term"""
    if not search_term:
        return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])
    
    filtered_models = [model[0] for model in ALL_MODELS if search_term.lower() in model[0].lower()]
    
    if filtered_models:
        return gr.Dropdown.update(choices=filtered_models, value=filtered_models[0])
    else:
        return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])

def get_model_info(model_name):
    """Get model information by name"""
    for model in ALL_MODELS:
        if model[0] == model_name:
            return model
    return None

def update_context_display(model_name):
    """Update the context size display based on the selected model"""
    model_info = get_model_info(model_name)
    if model_info:
        name, model_id, context_size = model_info
        context_formatted = f"{context_size:,}"
        return f"{context_formatted} tokens"
    return "Unknown"

def update_models_from_sort(sort_option):
    """Update models list based on sorting option"""
    for category in MODELS:
        if category["category"] == "Sort By":
            for option in category["models"]:
                if option[0] == sort_option:
                    sort_key = option[1]
                    sorted_models = apply_sort(sort_key)
                    return gr.Dropdown.update(choices=[model[0] for model in sorted_models], value=sorted_models[0][0])
    
    # Default sorting if option not found
    return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])

# Create enhanced interface
with gr.Blocks(css="""
    .context-size { 
        font-size: 0.9em;
        color: #666;
        margin-left: 10px;
    }
    footer { display: none !important; }
    .model-selection-row {
        display: flex;
        align-items: center;
    }
    .parameter-grid {
        display: grid;
        grid-template-columns: 1fr 1fr;
        gap: 10px;
    }
""") as demo:
    gr.Markdown("""
    # Vision AI Chat
    
    Chat with various AI vision models from OpenRouter with support for images and documents.
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                height=500, 
                show_copy_button=True, 
                show_label=False,
                avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg")
            )
            
            with gr.Row():
                message = gr.Textbox(
                    placeholder="Type your message here...",
                    label="Message",
                    lines=2
                )
            
            with gr.Row():
                with gr.Column(scale=3):
                    submit_btn = gr.Button("Send", variant="primary")
                
                with gr.Column(scale=1):
                    clear_btn = gr.Button("Clear Chat", variant="secondary")
            
            with gr.Row():
                # Image upload
                with gr.Accordion("Upload Images", open=False):
                    images = gr.Gallery(
                        label="Uploaded Images", 
                        show_label=True,
                        columns=4, 
                        height="auto",
                        object_fit="contain"
                    )
                    
                    image_upload_btn = gr.UploadButton(
                        label="Upload Images",
                        file_types=["image"],
                        file_count="multiple"
                    )
                
                # Document upload
                with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
                    documents = gr.File(
                        label="Uploaded Documents",
                        file_types=[".pdf", ".md", ".txt"], 
                        file_count="multiple"
                    )
        
        with gr.Column(scale=1):
            with gr.Group():
                gr.Markdown("### Model Selection")
                
                with gr.Row(elem_classes="model-selection-row"):
                    model_search = gr.Textbox(
                        placeholder="Search models...",
                        label="",
                        show_label=False
                    )
                
                with gr.Row(elem_classes="model-selection-row"):
                    model_choice = gr.Dropdown(
                        [model[0] for model in ALL_MODELS],
                        value=ALL_MODELS[0][0],
                        label="Model"
                    )
                    context_display = gr.Textbox(
                        value=update_context_display(ALL_MODELS[0][0]),
                        label="Context",
                        interactive=False,
                        elem_classes="context-size"
                    )
                
                # Model category selection
                with gr.Accordion("Browse by Category", open=False):
                    model_categories = gr.Radio(
                        [category["category"] for category in MODELS],
                        label="Categories",
                        value=MODELS[0]["category"]
                    )
                    
                    category_models = gr.Radio(
                        [model[0] for model in MODELS[0]["models"]],
                        label="Models in Category"
                    )
                
                # Sort options
                with gr.Accordion("Sort Models", open=False):
                    sort_options = gr.Radio(
                        ["Context: High to Low", "Context: Low to High", "Newest", 
                         "Throughput: High to Low", "Latency: Low to High"],
                        label="Sort By",
                        value="Context: High to Low"
                    )
            
            with gr.Accordion("Generation Parameters", open=False):
                with gr.Group(elem_classes="parameter-grid"):
                    temperature = gr.Slider(
                        minimum=0.0, 
                        maximum=2.0, 
                        value=0.7, 
                        step=0.1,
                        label="Temperature"
                    )
                    
                    max_tokens = gr.Slider(
                        minimum=100, 
                        maximum=4000, 
                        value=1000, 
                        step=100,
                        label="Max Tokens"
                    )
                    
                    top_p = gr.Slider(
                        minimum=0.1, 
                        maximum=1.0, 
                        value=0.8, 
                        step=0.1,
                        label="Top P"
                    )
                    
                    frequency_penalty = gr.Slider(
                        minimum=-2.0, 
                        maximum=2.0, 
                        value=0.0, 
                        step=0.1,
                        label="Frequency Penalty"
                    )
                    
                    presence_penalty = gr.Slider(
                        minimum=-2.0, 
                        maximum=2.0, 
                        value=0.0, 
                        step=0.1,
                        label="Presence Penalty"
                    )
                    
                    reasoning_effort = gr.Radio(
                        ["none", "low", "medium", "high"],
                        value="none",
                        label="Reasoning Effort"
                    )
        
            with gr.Accordion("Advanced Options", open=False):
                with gr.Row():
                    with gr.Column():
                        repetition_penalty = gr.Slider(
                            minimum=0.1, 
                            maximum=2.0, 
                            value=1.0, 
                            step=0.1,
                            label="Repetition Penalty"
                        )
                        
                        top_k = gr.Slider(
                            minimum=1, 
                            maximum=100, 
                            value=40, 
                            step=1,
                            label="Top K"
                        )
                        
                        min_p = gr.Slider(
                            minimum=0.0, 
                            maximum=1.0, 
                            value=0.1, 
                            step=0.05,
                            label="Min P"
                        )
                    
                    with gr.Column():
                        seed = gr.Number(
                            value=0,
                            label="Seed (0 for random)",
                            precision=0
                        )
                        
                        top_a = gr.Slider(
                            minimum=0.0, 
                            maximum=1.0, 
                            value=0.0, 
                            step=0.05,
                            label="Top A"
                        )
                        
                        stream_output = gr.Checkbox(
                            label="Stream Output",
                            value=False
                        )
                
                with gr.Row():
                    response_format = gr.Radio(
                        ["default", "json_object"],
                        value="default",
                        label="Response Format"
                    )
                    
                    gr.Markdown("""
                    * **json_object**: Forces the model to respond with valid JSON only.
                    * Only available on certain models - check model support on OpenRouter.
                    """)

            # Custom instructing options
            with gr.Accordion("Custom Instructions", open=False):
                system_message = gr.Textbox(
                    placeholder="Enter a system message to guide the model's behavior...",
                    label="System Message",
                    lines=3
                )
                
                transforms = gr.CheckboxGroup(
                    ["prompt_optimize", "prompt_distill", "prompt_compress"],
                    label="Prompt Transforms (OpenRouter specific)"
                )
                
                gr.Markdown("""
                * **prompt_optimize**: Improve prompt for better responses.
                * **prompt_distill**: Compress prompt to use fewer tokens without changing meaning.
                * **prompt_compress**: Aggressively compress prompt to fit larger contexts.
                """)

# Connect model search to dropdown filter
model_search.change(
    fn=filter_models,
    inputs=[model_search],
    outputs=[model_choice]
)

# Update context display when model changes
model_choice.change(
    fn=update_context_display,
    inputs=[model_choice],
    outputs=[context_display]
)

# Update model list when category changes
def update_category_models(category):
    for cat in MODELS:
        if cat["category"] == category:
            return gr.Radio.update(choices=[model[0] for model in cat["models"]], value=cat["models"][0][0])
    return gr.Radio.update(choices=[], value=None)

model_categories.change(
    fn=update_category_models,
    inputs=[model_categories],
    outputs=[category_models]
)

# Update main model choice when category model is selected
category_models.change(
    fn=lambda x: x,
    inputs=[category_models],
    outputs=[model_choice]
)

# Process uploaded images
def process_uploaded_images(files):
    return [file.name for file in files]

image_upload_btn.upload(
    fn=process_uploaded_images,
    inputs=[image_upload_btn],
    outputs=[images]
)

# Enhanced AI query function with all advanced parameters
def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p, 
           frequency_penalty, presence_penalty, repetition_penalty, top_k, 
           min_p, seed, top_a, stream_output, response_format, 
           images, documents, reasoning_effort, system_message, transforms):
    """Comprehensive AI query function with all parameters"""
    if not message.strip() and not images and not documents:
        return chatbot, ""
    
    # Get model ID and context size
    model_id = None
    context_size = 0
    for name, model_id_value, ctx_size in ALL_MODELS:
        if name == model_choice:
            model_id = model_id_value
            context_size = ctx_size
            break
    
    if model_id is None:
        logger.error(f"Model not found: {model_choice}")
        return chatbot + [[message, "Error: Model not found"]], ""
    
    # Create messages from chatbot history
    messages = format_to_message_dict(chatbot)
    
    # Add system message if provided
    if system_message and system_message.strip():
        # Insert at the beginning to override any existing system message
        for i, msg in enumerate(messages):
            if msg.get("role") == "system":
                messages.pop(i)
                break
        messages.insert(0, {"role": "system", "content": system_message.strip()})
    
    # Prepare message with images and documents if any
    content = prepare_message_with_media(message, images, documents)
    
    # Add current message
    messages.append({"role": "user", "content": content})
    
    # Call API
    try:
        logger.info(f"Sending request to model: {model_id}")
        
        # Build the comprehensive payload with all parameters
        payload = {
            "model": model_id,
            "messages": messages,
            "temperature": temperature,
            "max_tokens": max_tokens,
            "top_p": top_p,
            "frequency_penalty": frequency_penalty,
            "presence_penalty": presence_penalty,
            "repetition_penalty": repetition_penalty if repetition_penalty != 1.0 else None,
            "top_k": top_k,
            "min_p": min_p if min_p > 0 else None,
            "seed": seed if seed > 0 else None,
            "top_a": top_a if top_a > 0 else None,
            "stream": stream_output
        }
        
        # Add response format if not default
        if response_format == "json_object":
            payload["response_format"] = {"type": "json_object"}
        
        # Add reasoning if selected
        if reasoning_effort != "none":
            payload["reasoning"] = {
                "effort": reasoning_effort
            }
        
        # Add transforms if selected
        if transforms:
            payload["transforms"] = transforms
        
        # Remove None values
        payload = {k: v for k, v in payload.items() if v is not None}
        
        logger.info(f"Request payload: {json.dumps(payload, default=str)}")
        
        response = requests.post(
            "https://openrouter.ai/api/v1/chat/completions",
            headers={
                "Content-Type": "application/json",
                "Authorization": f"Bearer {OPENROUTER_API_KEY}",
                "HTTP-Referer": "https://huggingface.co/spaces"
            },
            json=payload,
            timeout=180,  # Longer timeout for document processing and streaming
            stream=stream_output
        )
        
        logger.info(f"Response status: {response.status_code}")
        
        if stream_output and response.status_code == 200:
            # Handle streaming response
            chatbot = chatbot + [[message, ""]]
            
            for line in response.iter_lines():
                if line:
                    line = line.decode('utf-8')
                    if line.startswith('data: '):
                        data = line[6:]
                        if data.strip() == '[DONE]':
                            break
                        try:
                            chunk = json.loads(data)
                            if "choices" in chunk and len(chunk["choices"]) > 0:
                                delta = chunk["choices"][0].get("delta", {})
                                if "content" in delta and delta["content"]:
                                    chatbot[-1][1] += delta["content"]
                                    yield chatbot, ""
                        except json.JSONDecodeError:
                            continue
            return chatbot, ""
        
        elif response.status_code == 200:
            # Handle normal response
            result = response.json()
            ai_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
            chatbot = chatbot + [[message, ai_response]]
            
            # Log token usage if available
            if "usage" in result:
                logger.info(f"Token usage: {result['usage']}")
        else:
            response_text = response.text
            logger.info(f"Error response body: {response_text}")
            error_message = f"Error: Status code {response.status_code}\n\nResponse: {response_text}"
            chatbot = chatbot + [[message, error_message]]
    except Exception as e:
        logger.error(f"Exception during API call: {str(e)}")
        chatbot = chatbot + [[message, f"Error: {str(e)}"]]
    
    return chatbot, ""

# Function to clear chat and reset parameters
def clear_chat():
    return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", []

# Set up events for the submit button
submit_btn.click(
    fn=ask_ai,
    inputs=[
        message, chatbot, model_choice, temperature, max_tokens, 
        top_p, frequency_penalty, presence_penalty, repetition_penalty, 
        top_k, min_p, seed, top_a, stream_output, response_format,
        images, documents, reasoning_effort, system_message, transforms
    ],
    outputs=[chatbot, message]
)

# Set up events for message submission (pressing Enter)
message.submit(
    fn=ask_ai,
    inputs=[
        message, chatbot, model_choice, temperature, max_tokens, 
        top_p, frequency_penalty, presence_penalty, repetition_penalty, 
        top_k, min_p, seed, top_a, stream_output, response_format,
        images, documents, reasoning_effort, system_message, transforms
    ],
    outputs=[chatbot, message]
)

# Set up events for the clear button
clear_btn.click(
    fn=clear_chat,
    inputs=[],
    outputs=[
        chatbot, message, images, documents, temperature, 
        max_tokens, top_p, frequency_penalty, presence_penalty,
        repetition_penalty, top_k, min_p, seed, top_a, stream_output,
        response_format, reasoning_effort, system_message, transforms
    ]
)

# Add a model information section
with gr.Accordion("About Selected Model", open=False):
    model_info_display = gr.HTML(
        value="<p>Select a model to see details</p>"
    )
    
    # Update model info when model changes
    def update_model_info(model_name):
        model_info = get_model_info(model_name)
        if model_info:
            name, model_id, context_size = model_info
            return f"""
            <div class="model-info">
                <h3>{name}</h3>
                <p><strong>Model ID:</strong> {model_id}</p>
                <p><strong>Context Size:</strong> {context_size:,} tokens</p>
                <p><strong>Provider:</strong> {model_id.split('/')[0]}</p>
            </div>
            """
        return "<p>Model information not available</p>"
    
    model_choice.change(
        fn=update_model_info,
        inputs=[model_choice],
        outputs=[model_info_display]
    )

# Add usage instructions
with gr.Accordion("Usage Instructions", open=False):
    gr.Markdown("""
    ## Basic Usage
    1. Type your message in the input box
    2. Select a model from the dropdown
    3. Click "Send" or press Enter
    
    ## Working with Files
    - **Images**: Upload images to use with vision-capable models like Llama 3.2 Vision
    - **Documents**: Upload PDF, Markdown, or text files to analyze their content
    
    ## Advanced Parameters
    - **Temperature**: Controls randomness (higher = more creative, lower = more deterministic)
    - **Max Tokens**: Maximum length of the response
    - **Top P**: Nucleus sampling threshold (higher = consider more tokens)
    - **Reasoning Effort**: Some models can show their reasoning process
    
    ## Tips
    - For code generation, use models like Qwen Coder
    - For visual tasks, choose vision-capable models
    - For long context, check the context window size next to the model name
    """)

# Add a footer with version info
footer_md = gr.Markdown("""
---
### OpenRouter AI Chat Interface v1.0
Built with ❤️ using Gradio and OpenRouter API | Context sizes shown next to model names
""")

# Launch directly with Gradio's built-in server
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)