File size: 140,757 Bytes
a13c2bb 453c62c 1ca78b8 5e9023b 453c62c 547bcde a791178 cf6c1c3 5e9023b c96734b 453c62c 9dba8e1 547bcde 9dba8e1 453c62c 547bcde 9dba8e1 547bcde 9dba8e1 453c62c 547bcde 9dba8e1 547bcde 9dba8e1 453c62c 547bcde 9dba8e1 547bcde a13c2bb 547bcde 301db48 84290a5 7717985 301db48 1ca78b8 547bcde a791178 547bcde 453c62c 301db48 453c62c 9dba8e1 453c62c 9dba8e1 37f5ab3 5e9023b 453c62c 37f5ab3 5e9023b 453c62c 9dba8e1 453c62c 37f5ab3 5e9023b 453c62c 9dba8e1 453c62c 37f5ab3 5e9023b 453c62c 9dba8e1 453c62c 37f5ab3 5fd37a0 453c62c 301db48 5fd37a0 453c62c 5fd37a0 453c62c 37f5ab3 a13c2bb 1ca78b8 547bcde 453c62c 547bcde 37f5ab3 301db48 7198760 301db48 7717985 547bcde a791178 cf6c1c3 547bcde 301db48 547bcde a791178 547bcde fbaef79 547bcde fbaef79 547bcde a791178 fbaef79 547bcde 1b53c0d 52f55d2 301db48 28966d8 52f55d2 301db48 28966d8 301db48 52f55d2 301db48 547bcde 84290a5 2bd0db0 84290a5 3ac0709 547bcde 301db48 547bcde 81d1619 5e9023b 453c62c 5e9023b a791178 5e9023b 9dba8e1 453c62c 5e9023b 3dc43a9 7050196 5e9023b 37f5ab3 453c62c 37f5ab3 547bcde 453c62c 9dba8e1 453c62c 37f5ab3 453c62c a791178 37f5ab3 5e9023b 37f5ab3 3dc43a9 37f5ab3 28966d8 5e9023b 37f5ab3 3dc43a9 37f5ab3 3dc43a9 37f5ab3 5e9023b a791178 bb79bb4 0b1b904 bb79bb4 a791178 7050196 3dc43a9 7050196 9dba8e1 547bcde 301db48 547bcde cf6c1c3 547bcde 7717985 547bcde 301db48 2bd0db0 301db48 547bcde a791178 547bcde 82b8835 301db48 234e0bf 301db48 7d23974 301db48 547bcde 301db48 547bcde 301db48 547bcde 301db48 547bcde 84290a5 499fdba 84290a5 499fdba 84290a5 499fdba 84290a5 499fdba 84290a5 499fdba 84290a5 499fdba 84290a5 499fdba 84290a5 499fdba 84290a5 499fdba 84290a5 499fdba 84290a5 7717985 547bcde a791178 547bcde a791178 547bcde fbaef79 a791178 547bcde a791178 547bcde a791178 547bcde a791178 547bcde 7d23974 547bcde 7d23974 547bcde 7d23974 547bcde abb48e6 547bcde abb48e6 547bcde abb48e6 84290a5 abb48e6 7717985 abb48e6 28966d8 abb48e6 28966d8 abb48e6 301db48 28966d8 547bcde 28966d8 301db48 547bcde 301db48 7d23974 28966d8 547bcde 52f55d2 28966d8 7d23974 28966d8 52f55d2 28966d8 52f55d2 28966d8 52f55d2 28966d8 7d23974 28966d8 52f55d2 28966d8 547bcde 301db48 7d23974 301db48 a84b4e4 301db48 a84b4e4 301db48 7d23974 52f55d2 a84b4e4 301db48 52f55d2 a84b4e4 52f55d2 a84b4e4 52f55d2 a84b4e4 301db48 a84b4e4 52f55d2 301db48 a84b4e4 301db48 a84b4e4 301db48 a84b4e4 301db48 a84b4e4 301db48 a84b4e4 301db48 a84b4e4 301db48 a84b4e4 301db48 a84b4e4 301db48 a84b4e4 301db48 a84b4e4 301db48 a84b4e4 301db48 a84b4e4 301db48 547bcde a791178 547bcde bb79bb4 234e0bf a791178 bb79bb4 a791178 547bcde bb79bb4 a791178 bb79bb4 a791178 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 301db48 547bcde 234e0bf 547bcde a791178 9dba8e1 a791178 5e9023b 234e0bf 37f5ab3 9dba8e1 a791178 9dba8e1 5e9023b 9dba8e1 5e9023b 234e0bf 9dba8e1 32ae536 547bcde a791178 547bcde 234e0bf 547bcde a791178 547bcde 9dba8e1 547bcde a791178 547bcde a791178 547bcde 0b1b904 234e0bf 0b1b904 234e0bf 0b1b904 234e0bf 547bcde 234e0bf 547bcde 234e0bf 84290a5 7717985 84290a5 547bcde 0b1b904 547bcde 234e0bf 547bcde 0b1b904 234e0bf 0b1b904 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde a791178 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 301db48 547bcde 301db48 234e0bf 547bcde 301db48 547bcde 301db48 547bcde a791178 301db48 547bcde 301db48 547bcde 234e0bf 547bcde 234e0bf 547bcde 234e0bf 547bcde 301db48 234e0bf 301db48 234e0bf 301db48 234e0bf 301db48 234e0bf 301db48 234e0bf 301db48 234e0bf 301db48 234e0bf 301db48 234e0bf 301db48 234e0bf 301db48 547bcde 234e0bf 547bcde 234e0bf a791178 9dba8e1 a791178 234e0bf 9dba8e1 453c62c 9dba8e1 547bcde 453c62c fbaef79 a791178 fbaef79 a791178 547bcde a791178 453c62c fbaef79 453c62c 84290a5 453c62c 547bcde 453c62c a791178 77b55d9 453c62c a791178 547bcde a791178 453c62c a791178 453c62c 301db48 453c62c 3dc43a9 453c62c fbaef79 547bcde 7717985 547bcde 7717985 547bcde fbaef79 7717985 e8e1e46 7717985 fbaef79 84290a5 fbaef79 547bcde 453c62c 547bcde 7717985 453c62c 547bcde 301db48 84290a5 301db48 84290a5 301db48 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 453c62c 301db48 453c62c 547bcde 453c62c 547bcde 301db48 84290a5 301db48 547bcde 453c62c 547bcde 453c62c 84290a5 547bcde 453c62c 7050196 547bcde 301db48 84290a5 7717985 301db48 547bcde e8e1e46 547bcde 301db48 84290a5 e8e1e46 301db48 547bcde 5a2e582 547bcde 301db48 84290a5 5a2e582 301db48 547bcde 301db48 5611226 301db48 5611226 234e0bf 5611226 301db48 5611226 301db48 5611226 301db48 cf6c1c3 234e0bf 301db48 547bcde 301db48 cf6c1c3 301db48 cf6c1c3 301db48 cf6c1c3 301db48 cf6c1c3 301db48 e8e1e46 5611226 e8e1e46 5611226 e8e1e46 5611226 301db48 cf6c1c3 301db48 cf6c1c3 301db48 cf6c1c3 301db48 cf6c1c3 301db48 cf6c1c3 301db48 547bcde 84290a5 301db48 84290a5 301db48 84290a5 301db48 547bcde 84290a5 7717985 547bcde 84290a5 547bcde 84290a5 547bcde 84290a5 547bcde 84290a5 547bcde 84290a5 301db48 84290a5 7717985 301db48 84290a5 547bcde a791178 547bcde 77b55d9 84290a5 5611226 77b55d9 547bcde 5611226 547bcde 5611226 547bcde 301db48 5611226 301db48 5611226 301db48 547bcde 77b55d9 453c62c 77b55d9 84290a5 e8e1e46 77b55d9 547bcde 301db48 e8e1e46 301db48 453c62c 301db48 547bcde 7050196 547bcde 301db48 7050196 e8e1e46 7050196 547bcde 7050196 301db48 453c62c 547bcde 301db48 547bcde 453c62c 547bcde 301db48 453c62c 547bcde 301db48 547bcde 301db48 547bcde 301db48 547bcde 301db48 453c62c 84290a5 301db48 84290a5 301db48 84290a5 301db48 84290a5 301db48 77b55d9 84290a5 77b55d9 cf6c1c3 547bcde 499fdba 7717985 84290a5 7717985 84290a5 547bcde 499fdba 7717985 547bcde 499fdba 234e0bf fbaef79 499fdba fbaef79 499fdba fbaef79 499fdba fbaef79 499fdba fbaef79 499fdba fbaef79 499fdba fbaef79 499fdba 84290a5 711b35d 7717985 499fdba fbaef79 547bcde 499fdba 547bcde 5611226 547bcde 453c62c 5611226 453c62c 547bcde 5611226 547bcde 453c62c fbaef79 5611226 453c62c a791178 453c62c 547bcde 453c62c 547bcde 453c62c 547bcde 5611226 547bcde 453c62c fbaef79 5611226 453c62c a791178 453c62c 547bcde 453c62c 9dba8e1 453c62c c96734b cf6c1c3 a791178 cf6c1c3 84290a5 7717985 84290a5 a791178 cf6c1c3 301db48 cf6c1c3 301db48 7198760 cf6c1c3 fbaef79 453c62c a791178 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 |
import os
import gradio as gr
import requests
import json
import base64
import logging
import io
import time
from typing import List, Dict, Any, Union, Tuple, Optional
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Gracefully import libraries with fallbacks
try:
from PIL import Image
HAS_PIL = True
except ImportError:
logger.warning("PIL not installed. Image processing will be limited.")
HAS_PIL = False
try:
import PyPDF2
HAS_PYPDF2 = True
except ImportError:
logger.warning("PyPDF2 not installed. PDF processing will be limited.")
HAS_PYPDF2 = False
try:
import markdown
HAS_MARKDOWN = True
except ImportError:
logger.warning("Markdown not installed. Markdown processing will be limited.")
HAS_MARKDOWN = False
try:
import openai
HAS_OPENAI = True
except ImportError:
logger.warning("OpenAI package not installed. OpenAI models will be unavailable.")
HAS_OPENAI = False
try:
from groq import Groq
HAS_GROQ = True
except ImportError:
logger.warning("Groq client not installed. Groq API will be unavailable.")
HAS_GROQ = False
try:
import cohere
HAS_COHERE = True
except ImportError:
logger.warning("Cohere package not installed. Cohere models will be unavailable.")
HAS_COHERE = False
try:
from huggingface_hub import InferenceClient
HAS_HF = True
except ImportError:
logger.warning("HuggingFace hub not installed. HuggingFace models will be limited.")
HAS_HF = False
# API keys from environment
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY", "")
COHERE_API_KEY = os.environ.get("COHERE_API_KEY", "")
HF_API_KEY = os.environ.get("HF_API_KEY", "")
TOGETHER_API_KEY = os.environ.get("TOGETHER_API_KEY", "")
GOOGLEAI_API_KEY = os.environ.get("GOOGLEAI_API_KEY", "")
ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY", "")
POE_API_KEY = os.environ.get("POE_API_KEY", "")
# Print application startup message with timestamp
current_time = time.strftime("%Y-%m-%d %H:%M:%S")
print(f"===== Application Startup at {current_time} =====\n")
# ==========================================================
# MODEL DEFINITIONS
# ==========================================================
# OPENROUTER MODELS
# These are the original models from the provided code
OPENROUTER_MODELS = [
# 1M+ Context Models
{"category": "1M+ Context", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
]},
# 100K-1M Context Models
{"category": "100K+ Context", "models": [
("DeepSeek: DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840),
("DeepSeek: R1", "deepseek/deepseek-r1:free", 163840),
("DeepSeek: DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072),
("DeepSeek: DeepSeek V3 0324", "deepseek/deepseek-chat-v3-0324:free", 131072),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("DeepSeek: DeepSeek V3", "deepseek/deepseek-chat:free", 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
("Meta: Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Meta: Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
("Mistral: Mistral Nemo", "mistralai/mistral-nemo:free", 128000),
]},
# 64K-100K Context Models
{"category": "64K-100K Context", "models": [
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("DeepSeek: R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
]},
# 32K-64K Context Models
{"category": "32K-64K Context", "models": [
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Qwen: QwQ 32B", "qwen/qwq-32b:free", 40000),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
("Qwerky 72b", "featherless/qwerky-72b:free", 32768),
("OlympicCoder 7B", "open-r1/olympiccoder-7b:free", 32768),
("OlympicCoder 32B", "open-r1/olympiccoder-32b:free", 32768),
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Reka: Flash 3", "rekaai/reka-flash-3:free", 32768),
("Dolphin3.0 R1 Mistral 24B", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 32768),
("Dolphin3.0 Mistral 24B", "cognitivecomputations/dolphin3.0-mistral-24b:free", 32768),
("Mistral: Mistral Small 3", "mistralai/mistral-small-24b-instruct-2501:free", 32768),
("Qwen2.5 Coder 32B Instruct", "qwen/qwen-2.5-coder-32b-instruct:free", 32768),
("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768),
]},
# 8K-32K Context Models
{"category": "8K-32K Context", "models": [
("Meta: Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000),
("Qwen: QwQ 32B Preview", "qwen/qwq-32b-preview:free", 16384),
("DeepSeek: R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("Moonshot AI: Moonlight 16B A3B Instruct", "moonshotai/moonlight-16b-a3b-instruct:free", 8192),
("DeepSeek: R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192),
("Google: Gemma 2 9B", "google/gemma-2-9b-it:free", 8192),
("Mistral: Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192),
("Microsoft: Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192),
("Microsoft: Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192),
("Meta: Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192),
("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192),
("Meta: Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000),
]},
# <8K Context Models
{"category": "4K Context", "models": [
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
("Rogue Rose 103B v0.2", "sophosympatheia/rogue-rose-103b-v0.2:free", 4096),
("Toppy M 7B", "undi95/toppy-m-7b:free", 4096),
("Hugging Face: Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096),
("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096),
]},
# Vision-capable Models
{"category": "Vision Models", "models": [
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
]},
]
# Flatten OpenRouter model list for easier access
OPENROUTER_ALL_MODELS = []
for category in OPENROUTER_MODELS:
for model in category["models"]:
if model not in OPENROUTER_ALL_MODELS: # Avoid duplicates
OPENROUTER_ALL_MODELS.append(model)
# VISION MODELS - For tracking which models support images
VISION_MODELS = {
"OpenRouter": [model[0] for model in OPENROUTER_MODELS[-1]["models"]], # Last category is Vision Models
"OpenAI": [
"gpt-4-vision-preview", "gpt-4o", "gpt-4o-mini", "gpt-4-turbo",
"gpt-4-turbo-preview", "gpt-4-0125-preview", "gpt-4-1106-preview",
"o1-preview", "o1-mini"
],
"HuggingFace": [
"Qwen/Qwen2.5-VL-7B-Instruct", "Qwen/qwen2.5-vl-3b-instruct",
"Qwen/qwen2.5-vl-32b-instruct", "Qwen/qwen2.5-vl-72b-instruct"
],
"Groq": ["llama-3.2-11b-vision", "llama-3.2-90b-vision"],
"Together": ["Llama-3.2-11B-Vision-Instruct", "Llama-3.2-90B-Vision-Instruct"],
#"OVH": ["llava-next-mistral-7b", "qwen2.5-vl-72b-instruct"],
#"Cerebras": [],
"GoogleAI": ["gemini-1.5-pro", "gemini-1.0-pro", "gemini-1.5-flash", "gemini-2.0-pro", "gemini-2.5-pro"]
}
# POE MODELS
POE_MODELS = {
"claude_3_igloo": 4000, # Claude-3.5-Sonnet
"claude_2_1_cedar": 4000, # Claude-3-Opus
"claude_2_1_bamboo": 4000, # Claude-3-Sonnet
"claude_3_haiku": 4000, # Claude-3-Haiku
"claude_3_igloo_200k": 200000, # Claude-3.5-Sonnet-200k
"claude_3_opus_200k": 200000, # Claude-3-Opus-200k
"claude_3_sonnet_200k": 200000, # Claude-3-Sonnet-200k
"claude_3_haiku_200k": 200000, # Claude-3-Haiku-200k
"claude_2_short": 4000, # Claude-2
"a2_2": 100000, # Claude-2-100k
"a2": 9000, # Claude-instant
"a2_100k": 100000, # Claude-instant-100k
"chinchilla": 4000, # GPT-3.5-Turbo
"gpt3_5": 2000, # GPT-3.5-Turbo-Raw
"chinchilla_instruct": 2000, # GPT-3.5-Turbo-Instruct
"agouti": 16000, # ChatGPT-16k
"gpt4_classic": 2000, # GPT-4-Classic
"beaver": 4000, # GPT-4-Turbo
"vizcacha": 128000, # GPT-4-Turbo-128k
"gpt4_o": 4000, # GPT-4o
"gpt4_o_128k": 128000, # GPT-4o-128k
"gpt4_o_mini": 4000, # GPT-4o-Mini
"gpt4_o_mini_128k": 128000, # GPT-4o-Mini-128k
"acouchy": 8000, # Google-PaLM
"code_llama_13b_instruct": 4000, # Code-Llama-13b
"code_llama_34b_instruct": 4000, # Code-Llama-34b
"upstage_solar_0_70b_16bit": 2000, # Solar-Mini
"gemini_pro_search": 4000, # Gemini-1.5-Flash-Search
"gemini_1_5_pro_1m": 2000000, # Gemini-1.5-Pro-2M
}
# Add vision-capable models to vision models list
POE_VISION_MODELS = [
"claude_3_igloo", "claude_2_1_cedar", "claude_2_1_bamboo", "claude_3_haiku",
"claude_3_igloo_200k", "claude_3_opus_200k", "claude_3_sonnet_200k", "claude_3_haiku_200k",
"gpt4_o", "gpt4_o_128k", "gpt4_o_mini", "gpt4_o_mini_128k", "beaver", "vizcacha"
]
VISION_MODELS["Poe"] = POE_VISION_MODELS
# OPENAI MODELS
OPENAI_MODELS = {
"gpt-3.5-turbo": 16385,
"gpt-3.5-turbo-0125": 16385,
"gpt-3.5-turbo-1106": 16385,
"gpt-3.5-turbo-instruct": 4096,
"gpt-4": 8192,
"gpt-4-0314": 8192,
"gpt-4-0613": 8192,
"gpt-4-turbo": 128000,
"gpt-4-turbo-2024-04-09": 128000,
"gpt-4-turbo-preview": 128000,
"gpt-4-0125-preview": 128000,
"gpt-4-1106-preview": 128000,
"gpt-4o": 128000,
"gpt-4o-2024-11-20": 128000,
"gpt-4o-2024-08-06": 128000,
"gpt-4o-2024-05-13": 128000,
"gpt-4o-mini": 128000,
"gpt-4o-mini-2024-07-18": 128000,
"o1-preview": 128000,
"o1-preview-2024-09-12": 128000,
"o1-mini": 128000,
"o1-mini-2024-09-12": 128000,
}
# HUGGINGFACE MODELS
HUGGINGFACE_MODELS = {
"microsoft/phi-3-mini-4k-instruct": 4096,
"microsoft/Phi-3-mini-128k-instruct": 131072,
"HuggingFaceH4/zephyr-7b-beta": 8192,
"deepseek-ai/DeepSeek-Coder-V2-Instruct": 8192,
"mistralai/Mistral-7B-Instruct-v0.3": 32768,
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768,
"microsoft/Phi-3.5-mini-instruct": 4096,
"google/gemma-2-2b-it": 2048,
"openai-community/gpt2": 1024,
"microsoft/phi-2": 2048,
"TinyLlama/TinyLlama-1.1B-Chat-v1.0": 2048,
"VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": 2048,
"VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": 4096,
"VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct": 4096,
"openGPT-X/Teuken-7B-instruct-research-v0.4": 4096,
"Qwen/Qwen2.5-7B-Instruct": 131072,
"tiiuae/falcon-7b-instruct": 8192,
"Qwen/QwQ-32B-preview": 32768,
"Qwen/Qwen2.5-VL-7B-Instruct": 64000,
"Qwen/qwen2.5-vl-3b-instruct": 64000,
"Qwen/qwen2.5-vl-32b-instruct": 8192,
"Qwen/qwen2.5-vl-72b-instruct": 131072,
}
# GROQ MODELS - We'll populate this dynamically
DEFAULT_GROQ_MODELS = {
"deepseek-r1-distill-llama-70b": 8192,
"deepseek-r1-distill-qwen-32b": 8192,
"gemma2-9b-it": 8192,
"llama-3.1-8b-instant": 131072,
"llama-3.2-1b-preview": 131072,
"llama-3.2-3b-preview": 131072,
"llama-3.2-11b-vision-preview": 131072,
"llama-3.2-90b-vision-preview": 131072,
"llama-3.3-70b-specdec": 131072,
"llama-3.3-70b-versatile": 131072,
"llama-guard-3-8b": 8192,
"llama3-8b-8192": 8192,
"llama3-70b-8192": 8192,
"mistral-saba-24b": 32768,
"qwen-2.5-32b": 32768,
"qwen-2.5-coder-32b": 32768,
"qwen-qwq-32b": 32768,
"playai-tts": 4096, # Including TTS models but setting reasonable context limits
"playai-tts-arabic": 4096,
"distil-whisper-large-v3-en": 4096,
"whisper-large-v3": 4096,
"whisper-large-v3-turbo": 4096
}
# COHERE MODELS
COHERE_MODELS = {
"command-r-plus-08-2024": 131072,
"command-r-plus-04-2024": 131072,
"command-r-plus": 131072,
"command-r-08-2024": 131072,
"command-r-03-2024": 131072,
"command-r": 131072,
"command": 4096,
"command-nightly": 131072,
"command-light": 4096,
"command-light-nightly": 4096,
"c4ai-aya-expanse-8b": 8192,
"c4ai-aya-expanse-32b": 131072,
}
# TOGETHER MODELS in the free tier
TOGETHER_MODELS = {
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": 131072,
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free": 8192,
"meta-llama/Llama-Vision-Free": 8192,
"meta-llama/Llama-3.3-70B-Instruct-Turbo-Free": 8192,
}
# Add to the vision models list
VISION_MODELS["Together"] = ["meta-llama/Llama-Vision-Free"]
# OVH MODELS - OVH AI Endpoints (free beta)
OVH_MODELS = {
"ovh/codestral-mamba-7b-v0.1": 131072,
"ovh/deepseek-r1-distill-llama-70b": 8192,
"ovh/llama-3.1-70b-instruct": 131072,
"ovh/llama-3.1-8b-instruct": 131072,
"ovh/llama-3.3-70b-instruct": 131072,
"ovh/llava-next-mistral-7b": 8192,
"ovh/mistral-7b-instruct-v0.3": 32768,
"ovh/mistral-nemo-2407": 131072,
"ovh/mixtral-8x7b-instruct": 32768,
"ovh/qwen2.5-coder-32b-instruct": 32768,
"ovh/qwen2.5-vl-72b-instruct": 131072,
}
# CEREBRAS MODELS
CEREBRAS_MODELS = {
"llama3.1-8b": 8192,
"llama-3.3-70b": 8192,
}
# GOOGLE AI MODELS
GOOGLEAI_MODELS = {
"gemini-1.0-pro": 32768,
"gemini-1.5-flash": 1000000,
"gemini-1.5-pro": 1000000,
"gemini-2.0-pro": 2000000,
"gemini-2.5-pro": 2000000,
}
# ANTHROPIC MODELS
ANTHROPIC_MODELS = {
"claude-3-7-sonnet-20250219": 128000, # Claude 3.7 Sonnet
"claude-3-5-sonnet-20241022": 200000, # Claude 3.5 Sonnet
"claude-3-5-haiku-20240307": 200000, # Claude 3.5 Haiku
"claude-3-5-sonnet-20240620": 200000, # Claude 3.5 Sonnet 2024-06-20
"claude-3-opus-20240229": 200000, # Claude 3 Opus
"claude-3-haiku-20240307": 200000, # Claude 3 Haiku
"claude-3-sonnet-20240229": 200000, # Claude 3 Sonnet
}
# Add Anthropic to the vision models list
VISION_MODELS["Anthropic"] = [
"claude-3-7-sonnet-20250219",
"claude-3-5-sonnet-20241022",
"claude-3-opus-20240229",
"claude-3-sonnet-20240229",
"claude-3-5-haiku-20240307",
"claude-3-haiku-20240307"
]
# Add all models with "vl", "vision", "visual" in their name to HF vision models
for model_name in list(HUGGINGFACE_MODELS.keys()):
if any(x in model_name.lower() for x in ["vl", "vision", "visual", "llava"]):
if model_name not in VISION_MODELS["HuggingFace"]:
VISION_MODELS["HuggingFace"].append(model_name)
# ==========================================================
# HELPER FUNCTIONS
# ==========================================================
def fetch_groq_models():
"""Fetch available Groq models with proper error handling"""
try:
if not HAS_GROQ or not GROQ_API_KEY:
logger.warning("Groq client not available or no API key. Using default model list.")
return DEFAULT_GROQ_MODELS
client = Groq(api_key=GROQ_API_KEY)
models = client.models.list()
# Create dictionary of model_id -> context size
model_dict = {}
for model in models.data:
model_id = model.id
# Map known context sizes or use a default
if "llama-3" in model_id and "70b" in model_id:
context_size = 131072
elif "llama-3" in model_id and "8b" in model_id:
context_size = 131072
elif "mixtral" in model_id:
context_size = 32768
elif "gemma" in model_id:
context_size = 8192
elif "vision" in model_id:
context_size = 131072
else:
context_size = 8192 # Default assumption
model_dict[model_id] = context_size
# Ensure we have models by combining with defaults
if not model_dict:
return DEFAULT_GROQ_MODELS
return {**DEFAULT_GROQ_MODELS, **model_dict}
except Exception as e:
logger.error(f"Error fetching Groq models: {e}")
return DEFAULT_GROQ_MODELS
# Initialize Groq models
GROQ_MODELS = fetch_groq_models()
def encode_image_to_base64(image_path):
"""Encode an image file to base64 string"""
try:
if isinstance(image_path, str): # File path as string
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension == "webp":
mime_type = "image/webp"
return f"data:{mime_type};base64,{encoded_string}"
elif hasattr(image_path, 'name'): # Handle Gradio file objects directly
with open(image_path.name, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
file_extension = image_path.name.split('.')[-1].lower()
mime_type = f"image/{file_extension}"
if file_extension in ["jpg", "jpeg"]:
mime_type = "image/jpeg"
elif file_extension == "png":
mime_type = "image/png"
elif file_extension == "webp":
mime_type = "image/webp"
return f"data:{mime_type};base64,{encoded_string}"
else: # Handle file object or other types
logger.error(f"Unsupported image type: {type(image_path)}")
return None
except Exception as e:
logger.error(f"Error encoding image: {str(e)}")
return None
def extract_text_from_file(file_path):
"""Extract text from various file types"""
try:
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'pdf':
if HAS_PYPDF2:
text = ""
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text() + "\n\n"
return text
else:
return "PDF processing is not available (PyPDF2 not installed)"
elif file_extension == 'md':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
elif file_extension == 'txt':
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
else:
return f"Unsupported file type: {file_extension}"
except Exception as e:
logger.error(f"Error extracting text from file: {str(e)}")
return f"Error processing file: {str(e)}"
def prepare_message_with_media(text, images=None, documents=None):
"""Prepare a message with text, images, and document content"""
# If no media, return text only
if not images and not documents:
return text
# Start with text content
if documents and len(documents) > 0:
# If there are documents, append their content to the text
document_texts = []
for doc in documents:
if doc is None:
continue
# Make sure to handle file objects properly
doc_path = doc.name if hasattr(doc, 'name') else doc
doc_text = extract_text_from_file(doc_path)
if doc_text:
document_texts.append(doc_text)
# Add document content to text
if document_texts:
if not text:
text = "Please analyze these documents:"
else:
text = f"{text}\n\nDocument content:\n\n"
text += "\n\n".join(document_texts)
# If no images, return text only
if not images:
return text
# If we have images, create a multimodal content array
content = [{"type": "text", "text": text or "Analyze this image:"}]
# Add images if any
if images:
# Check if images is a list of image paths or file objects
if isinstance(images, list):
for img in images:
if img is None:
continue
encoded_image = encode_image_to_base64(img)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
else:
# For single image or Gallery component
logger.warning(f"Images is not a list: {type(images)}")
# Try to handle as single image
encoded_image = encode_image_to_base64(images)
if encoded_image:
content.append({
"type": "image_url",
"image_url": {"url": encoded_image}
})
return content
def format_to_message_dict(history):
"""Convert history to proper message format"""
messages = []
for item in history:
if isinstance(item, dict) and "role" in item and "content" in item:
# Already in the correct format
messages.append(item)
elif isinstance(item, list) and len(item) == 2:
# Convert from old format [user_msg, ai_msg]
human, ai = item
if human:
messages.append({"role": "user", "content": human})
if ai:
messages.append({"role": "assistant", "content": ai})
return messages
def process_uploaded_images(files):
"""Process uploaded image files"""
file_paths = []
for file in files:
if hasattr(file, 'name'):
file_paths.append(file.name)
return file_paths
def filter_models(provider, search_term):
"""Filter models based on search term and provider"""
if provider == "OpenRouter":
all_models = [model[0] for model in OPENROUTER_ALL_MODELS]
elif provider == "OpenAI":
all_models = list(OPENAI_MODELS.keys())
elif provider == "HuggingFace":
all_models = list(HUGGINGFACE_MODELS.keys())
elif provider == "Groq":
all_models = list(GROQ_MODELS.keys())
elif provider == "Cohere":
all_models = list(COHERE_MODELS.keys())
elif provider == "Together":
all_models = list(TOGETHER_MODELS.keys())
elif provider == "OVH":
all_models = list(OVH_MODELS.keys())
elif provider == "Cerebras":
all_models = list(CEREBRAS_MODELS.keys())
elif provider == "GoogleAI":
all_models = list(GOOGLEAI_MODELS.keys())
else:
return [], None
if not search_term:
return all_models, all_models[0] if all_models else None
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return filtered_models, filtered_models[0]
else:
return all_models, all_models[0] if all_models else None
def get_model_info(provider, model_choice):
"""Get model ID and context size based on provider and model name"""
if provider == "OpenRouter":
for name, model_id, ctx_size in OPENROUTER_ALL_MODELS:
if name == model_choice:
return model_id, ctx_size
elif provider == "Poe":
if model_choice in POE_MODELS:
return model_choice, POE_MODELS[model_choice]
elif provider == "OpenAI":
if model_choice in OPENAI_MODELS:
return model_choice, OPENAI_MODELS[model_choice]
elif provider == "HuggingFace":
if model_choice in HUGGINGFACE_MODELS:
return model_choice, HUGGINGFACE_MODELS[model_choice]
elif provider == "Groq":
if model_choice in GROQ_MODELS:
return model_choice, GROQ_MODELS[model_choice]
elif provider == "Cohere":
if model_choice in COHERE_MODELS:
return model_choice, COHERE_MODELS[model_choice]
elif provider == "Together":
if model_choice in TOGETHER_MODELS:
return model_choice, TOGETHER_MODELS[model_choice]
elif provider == "Anthropic":
if model_choice in ANTHROPIC_MODELS:
return model_choice, ANTHROPIC_MODELS[model_choice]
elif provider == "GoogleAI":
if model_choice in GOOGLEAI_MODELS:
return model_choice, GOOGLEAI_MODELS[model_choice]
return None, 0
def update_context_display(provider, model_name):
"""Update context size display for the selected model"""
_, ctx_size = get_model_info(provider, model_name)
return f"{ctx_size:,}" if ctx_size else "Unknown"
def is_vision_model(provider, model_name):
"""Check if a model supports vision/images"""
# Safety check for None model name
if model_name is None:
return False
if provider in VISION_MODELS:
if model_name in VISION_MODELS[provider]:
return True
# Also check for common vision indicators in model names
try:
if any(x in model_name.lower() for x in ["vl", "vision", "visual", "llava", "gemini"]):
return True
except AttributeError:
# In case model_name is not a string or has no lower method
return False
return False
def update_model_info(provider, model_name):
"""Generate HTML info display for the selected model"""
model_id, ctx_size = get_model_info(provider, model_name)
if not model_id:
return "<p>Model information not available</p>"
# Check if this is a vision model
is_vision = is_vision_model(provider, model_name)
vision_badge = '<span style="background-color: #4CAF50; color: white; padding: 3px 6px; border-radius: 3px; font-size: 0.8em; margin-left: 5px;">Vision</span>' if is_vision else ''
# For OpenRouter, show the model ID
model_id_html = f"<p><strong>Model ID:</strong> {model_id}</p>" if provider == "OpenRouter" else ""
# For others, the ID is the same as the name
if provider != "OpenRouter":
model_id_html = ""
return f"""
<div class="model-info">
<h3>{model_name} {vision_badge}</h3>
{model_id_html}
<p><strong>Context Size:</strong> {ctx_size:,} tokens</p>
<p><strong>Provider:</strong> {provider}</p>
{f'<p><strong>Features:</strong> Supports image understanding</p>' if is_vision else ''}
</div>
"""
# ==========================================================
# API HANDLERS
# ==========================================================
def call_anthropic_api(payload, api_key_override=None):
"""Make a call to Anthropic API with error handling"""
try:
# Try to import Anthropic
try:
import anthropic
from anthropic import Anthropic
except ImportError:
raise ImportError("Anthropic package not installed. Install it with: pip install anthropic")
api_key = api_key_override if api_key_override else os.environ.get("ANTHROPIC_API_KEY", "")
if not api_key:
raise ValueError("Anthropic API key is required")
client = Anthropic(api_key=api_key)
# Extract parameters from payload
model = payload.get("model", "claude-3-5-sonnet-20241022")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
# Format messages for Anthropic
# Find system message if any
system_prompt = None
chat_messages = []
for msg in messages:
if msg["role"] == "system":
system_prompt = msg["content"]
else:
# Format content
if isinstance(msg["content"], list):
# Handle multimodal content (images)
anthropic_content = []
for item in msg["content"]:
if item["type"] == "text":
anthropic_content.append({
"type": "text",
"text": item["text"]
})
elif item["type"] == "image_url":
# Extract base64 from data URL if present
image_url = item["image_url"]["url"]
if image_url.startswith("data:"):
# Extract media type and base64 data
parts = image_url.split(",", 1)
media_type = parts[0].split(":")[1].split(";")[0]
base64_data = parts[1]
anthropic_content.append({
"type": "image",
"source": {
"type": "base64",
"media_type": media_type,
"data": base64_data
}
})
else:
# URL not supported by Anthropic yet
anthropic_content.append({
"type": "text",
"text": f"[Image URL: {image_url}]"
})
chat_messages.append({
"role": msg["role"],
"content": anthropic_content
})
else:
# Simple text content
chat_messages.append({
"role": msg["role"],
"content": msg["content"]
})
# Make request to Anthropic
response = client.messages.create(
model=model,
max_tokens=max_tokens,
temperature=temperature,
system=system_prompt,
messages=chat_messages
)
return response
except Exception as e:
logger.error(f"Anthropic API error: {str(e)}")
raise e
def call_poe_api(payload, api_key_override=None):
"""Make a call to Poe API with error handling"""
try:
# Try to import fastapi_poe
try:
import fastapi_poe as fp
except ImportError:
raise ImportError("fastapi_poe package not installed. Install it with: pip install fastapi_poe")
api_key = api_key_override if api_key_override else os.environ.get("POE_API_KEY", "")
if not api_key:
raise ValueError("Poe API key is required")
# Extract parameters from payload
model = payload.get("model", "chinchilla") # Default to GPT-3.5-Turbo
messages = payload.get("messages", [])
# Convert messages to Poe format
poe_messages = []
for msg in messages:
role = msg["role"]
content = msg["content"]
# Skip system messages as Poe doesn't support them directly
if role == "system":
continue
# Convert content format
if isinstance(content, list):
# Handle multimodal content (images)
text_parts = []
for item in content:
if item["type"] == "text":
text_parts.append(item["text"])
# For images, we'll need to extract and handle them separately
# This is a simplified approach - in reality, you'd need to handle images properly
content = "\n".join(text_parts)
# Add message to Poe messages
poe_messages.append(fp.ProtocolMessage(role=role, content=content))
# Make synchronous request to Poe
response_content = ""
for partial in fp.get_bot_response_sync(messages=poe_messages, bot_name=model, api_key=api_key):
if hasattr(partial, "text"):
response_content += partial.text
# Create a response object with a structure similar to other APIs
response = {
"id": f"poe-{int(time.time())}",
"choices": [
{
"message": {
"role": "assistant",
"content": response_content
}
}
]
}
return response
except Exception as e:
logger.error(f"Poe API error: {str(e)}")
raise e
def call_openrouter_api(payload, api_key_override=None):
"""Make a call to OpenRouter API with error handling"""
try:
api_key = api_key_override if api_key_override else OPENROUTER_API_KEY
if not api_key:
raise ValueError("OpenRouter API key is required")
response = requests.post(
"https://openrouter.ai/api/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
"HTTP-Referer": "https://huggingface.co/spaces/cstr/CrispChat"
},
json=payload,
timeout=180 # Longer timeout for document processing
)
return response
except requests.RequestException as e:
logger.error(f"OpenRouter API request error: {str(e)}")
raise e
def call_openai_api(payload, api_key_override=None):
"""Make a call to OpenAI API with error handling"""
try:
if not HAS_OPENAI:
raise ImportError("OpenAI package not installed")
api_key = api_key_override if api_key_override else OPENAI_API_KEY
if not api_key:
raise ValueError("OpenAI API key is required")
client = openai.OpenAI(api_key=api_key)
# Extract parameters from payload
model = payload.get("model", "gpt-3.5-turbo")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
stream = payload.get("stream", False)
top_p = payload.get("top_p", 0.9)
presence_penalty = payload.get("presence_penalty", 0)
frequency_penalty = payload.get("frequency_penalty", 0)
# Handle response format if specified
response_format = None
if payload.get("response_format") == "json_object":
response_format = {"type": "json_object"}
# Create completion
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
stream=stream,
top_p=top_p,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
response_format=response_format
)
return response
except Exception as e:
logger.error(f"OpenAI API error: {str(e)}")
raise e
def call_huggingface_api(payload, api_key_override=None):
"""Make a call to HuggingFace API with error handling"""
try:
if not HAS_HF:
raise ImportError("HuggingFace hub not installed")
api_key = api_key_override if api_key_override else HF_API_KEY
# Extract parameters from payload
model_id = payload.get("model", "mistralai/Mistral-7B-Instruct-v0.3")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 500)
# Create a prompt from messages
prompt = ""
for msg in messages:
role = msg["role"].upper()
content = msg["content"]
# Handle multimodal content
if isinstance(content, list):
text_parts = []
for item in content:
if item["type"] == "text":
text_parts.append(item["text"])
content = "\n".join(text_parts)
prompt += f"{role}: {content}\n"
prompt += "ASSISTANT: "
# Create client with or without API key
client = InferenceClient(token=api_key) if api_key else InferenceClient()
# Generate response
response = client.text_generation(
prompt,
model=model_id,
max_new_tokens=max_tokens,
temperature=temperature,
repetition_penalty=1.1
)
return {"generated_text": str(response)}
except Exception as e:
logger.error(f"HuggingFace API error: {str(e)}")
raise e
def call_groq_api(payload, api_key_override=None):
"""Make a call to Groq API with error handling"""
try:
if not HAS_GROQ:
raise ImportError("Groq client not installed")
api_key = api_key_override if api_key_override else GROQ_API_KEY
if not api_key:
raise ValueError("Groq API key is required")
client = Groq(api_key=api_key)
# Extract parameters from payload
model = payload.get("model", "llama-3.1-8b-instant")
# Clean up messages - remove any unexpected properties
messages = []
for msg in payload.get("messages", []):
clean_msg = {
"role": msg["role"],
"content": msg["content"]
}
messages.append(clean_msg)
# Basic parameters
groq_payload = {
"model": model,
"messages": messages,
"temperature": payload.get("temperature", 0.7),
"max_tokens": payload.get("max_tokens", 1000),
"stream": payload.get("stream", False),
"top_p": payload.get("top_p", 0.9)
}
# Create completion
response = client.chat.completions.create(**groq_payload)
return response
except Exception as e:
logger.error(f"Groq API error: {str(e)}")
raise e
def call_cohere_api(payload, api_key_override=None):
"""Make a call to Cohere API with error handling"""
try:
if not HAS_COHERE:
raise ImportError("Cohere package not installed")
api_key = api_key_override if api_key_override else COHERE_API_KEY
if not api_key:
raise ValueError("Cohere API key is required")
client = cohere.ClientV2(api_key=api_key)
# Extract parameters from payload
model = payload.get("model", "command-r-plus")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
# Create chat completion
response = client.chat(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens
)
return response
except Exception as e:
logger.error(f"Cohere API error: {str(e)}")
raise e
def extract_ai_response(result, provider):
"""Extract AI response based on provider format"""
try:
if provider == "OpenRouter":
if isinstance(result, dict):
if "choices" in result and len(result["choices"]) > 0:
if "message" in result["choices"][0]:
message = result["choices"][0]["message"]
if message.get("reasoning") and not message.get("content"):
reasoning = message.get("reasoning")
lines = reasoning.strip().split('\n')
for line in lines:
if line and not line.startswith('I should') and not line.startswith('Let me'):
return line.strip()
for line in lines:
if line.strip():
return line.strip()
return message.get("content", "")
elif "delta" in result["choices"][0]:
return result["choices"][0]["delta"].get("content", "")
elif provider == "OpenAI":
if hasattr(result, "choices") and len(result.choices) > 0:
return result.choices[0].message.content
elif provider == "Anthropic":
if hasattr(result, "content"):
# Combine text from all content blocks
full_text = ""
for block in result.content:
if block.type == "text":
full_text += block.text
return full_text
return "No content returned from Anthropic"
elif provider == "HuggingFace":
return result.get("generated_text", "")
elif provider == "Groq":
if hasattr(result, "choices") and len(result.choices) > 0:
return result.choices[0].message.content
elif provider == "Cohere":
# Specific handling for Cohere's response format
if hasattr(result, "message") and hasattr(result.message, "content"):
# Extract text from content items
text_content = ""
for content_item in result.message.content:
if hasattr(content_item, "text") and content_item.text:
text_content += content_item.text
return text_content
else:
return "No response content from Cohere"
elif provider == "Poe":
if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0:
return result["choices"][0]["message"]["content"]
return "No response content from Poe"
elif provider == "Together":
# Handle response from Together's native client
if hasattr(result, "choices") and len(result.choices) > 0:
if hasattr(result.choices[0], "message") and hasattr(result.choices[0].message, "content"):
return result.choices[0].message.content
elif hasattr(result.choices[0], "delta") and hasattr(result.choices[0].delta, "content"):
return result.choices[0].delta.content
# Fallback
return str(result)
elif provider == "OVH":
if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0:
return result["choices"][0]["message"]["content"]
elif provider == "Cerebras":
if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0:
return result["choices"][0]["message"]["content"]
elif provider == "GoogleAI":
if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0:
return result["choices"][0]["message"]["content"]
logger.error(f"Unexpected response structure from {provider}: {result}")
return f"Error: Could not extract response from {provider} API result"
except Exception as e:
logger.error(f"Error extracting AI response: {str(e)}")
return f"Error: {str(e)}"
def call_together_api(payload, api_key_override=None):
"""Make a call to Together API with error handling using their native client"""
try:
# Import Together's native client
# Note: This might need to be installed with: pip install together
try:
from together import Together
except ImportError:
raise ImportError("The Together Python package is not installed. Please install it with: pip install together")
api_key = api_key_override if api_key_override else TOGETHER_API_KEY
if not api_key:
raise ValueError("Together API key is required")
# Create the Together client
client = Together(api_key=api_key)
# Extract parameters from payload
requested_model = payload.get("model", "")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
stream = payload.get("stream", False)
# Use one of the free, serverless models
free_models = [
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free",
"meta-llama/Llama-Vision-Free",
"meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
]
# Default to the first free model
model = free_models[0]
# Try to match a requested model with a free model if possible
if requested_model:
for free_model in free_models:
if requested_model.lower() in free_model.lower() or free_model.lower() in requested_model.lower():
model = free_model
break
# Process messages for possible image content
processed_messages = []
for msg in messages:
role = msg["role"]
content = msg["content"]
# Handle multimodal content for vision models
if isinstance(content, list) and "vision" in model.lower():
# Format according to Together's expected multimodal format
parts = []
for item in content:
if item["type"] == "text":
parts.append({"type": "text", "text": item["text"]})
elif item["type"] == "image_url":
parts.append({
"type": "image_url",
"image_url": item["image_url"]
})
processed_messages.append({"role": role, "content": parts})
else:
# Regular text messages
processed_messages.append({"role": role, "content": content})
# Create completion with Together's client
response = client.chat.completions.create(
model=model,
messages=processed_messages,
temperature=temperature,
max_tokens=max_tokens,
stream=stream
)
return response
except Exception as e:
logger.error(f"Together API error: {str(e)}")
raise e
def call_ovh_api(payload, api_key_override=None):
"""Make a call to OVH AI Endpoints API with error handling"""
try:
# Extract parameters from payload
model = payload.get("model", "ovh/llama-3.1-8b-instruct")
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
headers = {
"Content-Type": "application/json"
}
data = {
"model": model,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Use a try-except to handle DNS resolution errors and provide a more helpful message
try:
# Correct endpoint URL based on documentation
response = requests.post(
"https://endpoints.ai.cloud.ovh.net/v1/chat/completions", # Updated endpoint
headers=headers,
json=data,
timeout=10 # Add timeout to avoid hanging
)
if response.status_code != 200:
raise ValueError(f"OVH API returned status code {response.status_code}: {response.text}")
return response.json()
except requests.exceptions.ConnectionError as e:
raise ValueError(f"Connection error to OVH API. This may be due to network restrictions in the environment: {str(e)}")
except Exception as e:
logger.error(f"OVH API error: {str(e)}")
raise e
def call_cerebras_api(payload, api_key_override=None):
"""Make a call to Cerebras API with error handling"""
try:
# Extract parameters from payload
requested_model = payload.get("model", "")
# Map the full model name to the correct Cerebras model ID
model_mapping = {
"cerebras/llama-3.1-8b": "llama3.1-8b",
"cerebras/llama-3.3-70b": "llama-3.3-70b",
"llama-3.1-8b": "llama3.1-8b",
"llama-3.3-70b": "llama-3.3-70b",
"llama3.1-8b": "llama3.1-8b"
}
# Default to the 8B model
model = "llama3.1-8b"
# If the requested model matches any of our mappings, use that instead
if requested_model in model_mapping:
model = model_mapping[requested_model]
elif "3.3" in requested_model or "70b" in requested_model.lower():
model = "llama-3.3-70b"
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
# Try-except block for network issues
try:
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key_override or os.environ.get('CEREBRAS_API_KEY', '')}"
}
data = {
"model": model,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
response = requests.post(
"https://api.cloud.cerebras.ai/v1/chat/completions",
headers=headers,
json=data,
timeout=30 # Increased timeout
)
if response.status_code != 200:
raise ValueError(f"Cerebras API returned status code {response.status_code}: {response.text}")
return response.json()
except requests.exceptions.RequestException as e:
# More specific error handling for network issues
if "NameResolution" in str(e):
raise ValueError(
"Unable to connect to the Cerebras API. This might be due to network "
"restrictions in your environment. The API requires direct internet access. "
"Please try a different provider or check your network settings."
)
else:
raise ValueError(f"Request to Cerebras API failed: {str(e)}")
except Exception as e:
logger.error(f"Cerebras API error: {str(e)}")
raise e
def call_googleai_api(payload, api_key_override=None):
"""Make a call to Google AI (Gemini) API with error handling"""
try:
api_key = api_key_override if api_key_override else GOOGLEAI_API_KEY
if not api_key:
raise ValueError("Google AI API key is required")
# Use regular requests instead of the SDK since it might be missing
gemini_api_url = "https://generativelanguage.googleapis.com/v1/models/gemini-1.5-pro:generateContent"
# Extract parameters from payload
messages = payload.get("messages", [])
temperature = payload.get("temperature", 0.7)
max_tokens = payload.get("max_tokens", 1000)
# Convert to Google's format
content_parts = []
# Add all messages
for msg in messages:
role = msg["role"]
content = msg["content"]
# Handle different roles
if role == "system":
# For system messages, we add it as part of the first user message
continue
elif role == "user":
# For user messages, add as regular content
if isinstance(content, str):
content_parts.append({"text": content})
else:
# Handle multimodal content
for item in content:
if item["type"] == "text":
content_parts.append({"text": item["text"]})
# Form the request data
data = {
"contents": [{"parts": content_parts}],
"generationConfig": {
"temperature": temperature,
"maxOutputTokens": max_tokens,
"topP": payload.get("top_p", 0.95),
}
}
headers = {
"Content-Type": "application/json",
"x-goog-api-key": api_key
}
# Make the request
response = requests.post(
gemini_api_url,
headers=headers,
json=data,
timeout=30
)
if response.status_code != 200:
error_msg = f"Google AI API error: {response.status_code} - {response.text}"
logger.error(error_msg)
raise ValueError(error_msg)
# Parse response and convert to standard format
result = response.json()
text_content = ""
# Extract text from response
if "candidates" in result and len(result["candidates"]) > 0:
candidate = result["candidates"][0]
if "content" in candidate and "parts" in candidate["content"]:
for part in candidate["content"]["parts"]:
if "text" in part:
text_content += part["text"]
# Create a standardized response format
return {
"choices": [
{
"message": {
"role": "assistant",
"content": text_content
}
}
]
}
except Exception as e:
logger.error(f"Google AI API error: {str(e)}")
raise e
# ==========================================================
# STREAMING HANDLERS
# ==========================================================
def openrouter_streaming_handler(response, history, message):
"""Handle streaming responses from OpenRouter"""
try:
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for line in response.iter_lines():
if not line:
continue
line = line.decode('utf-8')
if not line.startswith('data: '):
continue
data = line[6:]
if data.strip() == '[DONE]':
break
try:
chunk = json.loads(data)
if "choices" in chunk and len(chunk["choices"]) > 0:
delta = chunk["choices"][0].get("delta", {})
if "content" in delta and delta["content"]:
# Update the current response
assistant_response += delta["content"]
yield updated_history + [{"role": "assistant", "content": assistant_response}]
except json.JSONDecodeError:
logger.error(f"Failed to parse JSON from chunk: {data}")
except Exception as e:
logger.error(f"Error in streaming handler: {str(e)}")
# Add error message to the current response
yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}]
def openai_streaming_handler(response, history, message):
"""Handle streaming responses from OpenAI"""
try:
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
except Exception as e:
logger.error(f"Error in OpenAI streaming handler: {str(e)}")
# Add error message to the current response
yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}]
def groq_streaming_handler(response, history, message):
"""Handle streaming responses from Groq"""
try:
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
except Exception as e:
logger.error(f"Error in Groq streaming handler: {str(e)}")
# Add error message to the current response
yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}]
def together_streaming_handler(response, history, message):
"""Handle streaming responses from Together"""
try:
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
except Exception as e:
logger.error(f"Error in Together streaming handler: {str(e)}")
# Add error message to the current response
yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}]
# ==========================================================
# MAIN FUNCTION TO ASK AI
# ==========================================================
def ask_ai(message, history, provider, model_choice, temperature, max_tokens, top_p,
frequency_penalty, presence_penalty, repetition_penalty, top_k, min_p,
seed, top_a, stream_output, response_format, images, documents,
reasoning_effort, system_message, transforms, api_key_override=None):
"""Enhanced AI query function with support for multiple providers"""
# Validate input
if not message.strip() and not images and not documents:
return history
# Create messages from chat history for API requests
messages = format_to_message_dict(history)
# Add system message if provided
if system_message and system_message.strip():
# Remove any existing system message
messages = [msg for msg in messages if msg.get("role") != "system"]
# Add new system message at the beginning
messages.insert(0, {"role": "system", "content": system_message.strip()})
# Prepare message with images and documents if any
content = prepare_message_with_media(message, images, documents)
# Add current message to API messages
messages.append({"role": "user", "content": content})
# Common parameters for all providers
common_params = {
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"presence_penalty": presence_penalty,
"stream": stream_output
}
try:
# Process based on provider
if provider == "OpenRouter":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in OpenRouter"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build OpenRouter payload
payload = {
"model": model_id,
"messages": messages,
**common_params
}
# Add optional parameters if set
if repetition_penalty != 1.0:
payload["repetition_penalty"] = repetition_penalty
if top_k > 0:
payload["top_k"] = top_k
if min_p > 0:
payload["min_p"] = min_p
if seed > 0:
payload["seed"] = seed
if top_a > 0:
payload["top_a"] = top_a
# Add response format if JSON is requested
if response_format == "json_object":
payload["response_format"] = {"type": "json_object"}
# Add reasoning if selected
if reasoning_effort != "none":
payload["reasoning"] = {
"effort": reasoning_effort
}
# Add transforms if selected
if transforms:
payload["transforms"] = transforms
# Call OpenRouter API
logger.info(f"Sending request to OpenRouter model: {model_id}")
response = call_openrouter_api(payload, api_key_override)
# Handle streaming response
if stream_output and response.status_code == 200:
# Set up generator for streaming updates
def streaming_generator():
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for line in response.iter_lines():
if not line:
continue
line = line.decode('utf-8')
if not line.startswith('data: '):
continue
data = line[6:]
if data.strip() == '[DONE]':
break
try:
chunk = json.loads(data)
if "choices" in chunk and len(chunk["choices"]) > 0:
delta = chunk["choices"][0].get("delta", {})
if "content" in delta and delta["content"]:
# Update the current response
assistant_response += delta["content"]
# Return updated history with current response
yield updated_history + [{"role": "assistant", "content": assistant_response}]
except json.JSONDecodeError:
logger.error(f"Failed to parse JSON from chunk: {data}")
return streaming_generator()
# Handle normal response
elif response.status_code == 200:
result = response.json()
logger.info(f"Response content: {result}")
# Extract AI response
ai_response = extract_ai_response(result, provider)
# Add response to history with proper format
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
# Handle error response
else:
error_message = f"Error: Status code {response.status_code}"
try:
response_data = response.json()
error_message += f"\n\nDetails: {json.dumps(response_data, indent=2)}"
except:
error_message += f"\n\nResponse: {response.text}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "Poe":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Poe"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build Poe payload
payload = {
"model": model_id,
"messages": messages
# Poe doesn't support most parameters directly
}
# Call Poe API
logger.info(f"Sending request to Poe model: {model_id}")
try:
response = call_poe_api(payload, api_key_override)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"Poe API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "Anthropic":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Anthropic"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build Anthropic payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call Anthropic API
logger.info(f"Sending request to Anthropic model: {model_id}")
try:
response = call_anthropic_api(payload, api_key_override)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"Anthropic API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "OpenAI":
# Process OpenAI similarly as above...
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in OpenAI"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build OpenAI payload
payload = {
"model": model_id,
"messages": messages,
**common_params
}
# Add response format if JSON is requested
if response_format == "json_object":
payload["response_format"] = {"type": "json_object"}
# Call OpenAI API
logger.info(f"Sending request to OpenAI model: {model_id}")
try:
response = call_openai_api(payload, api_key_override)
# Handle streaming response
if stream_output:
# Set up generator for streaming updates
def streaming_generator():
updated_history = history + [{"role": "user", "content": message}]
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
return streaming_generator()
# Handle normal response
else:
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"OpenAI API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "HuggingFace":
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in HuggingFace"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build HuggingFace payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call HuggingFace API
logger.info(f"Sending request to HuggingFace model: {model_id}")
try:
response = call_huggingface_api(payload, api_key_override)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"HuggingFace API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "Groq":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Groq"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build Groq payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p,
"stream": stream_output
}
# Call Groq API
logger.info(f"Sending request to Groq model: {model_id}")
try:
response = call_groq_api(payload, api_key_override)
# Handle streaming response
if stream_output:
# Add message to history
updated_history = history + [{"role": "user", "content": message}]
# Set up generator for streaming updates
def streaming_generator():
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
return streaming_generator()
# Handle normal response
else:
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"Groq API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "Cohere":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Cohere"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build Cohere payload (doesn't support streaming the same way)
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call Cohere API
logger.info(f"Sending request to Cohere model: {model_id}")
try:
response = call_cohere_api(payload, api_key_override)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"Cohere API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "Together":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Together"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build Together payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"stream": stream_output
}
# Call Together API
logger.info(f"Sending request to Together model: {model_id}")
try:
response = call_together_api(payload, api_key_override)
# Handle streaming response
if stream_output:
# Add message to history
updated_history = history + [{"role": "user", "content": message}]
# Set up generator for streaming updates
def streaming_generator():
assistant_response = ""
for chunk in response:
if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
assistant_response += content
yield updated_history + [{"role": "assistant", "content": assistant_response}]
return streaming_generator()
# Handle normal response
else:
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"Together API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "OVH":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in OVH"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build OVH payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call OVH API
logger.info(f"Sending request to OVH model: {model_id}")
try:
response = call_ovh_api(payload)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"OVH API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "Cerebras":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in Cerebras"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build Cerebras payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens
}
# Call Cerebras API
logger.info(f"Sending request to Cerebras model: {model_id}")
try:
response = call_cerebras_api(payload)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"Cerebras API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
elif provider == "GoogleAI":
# Get model ID from registry
model_id, _ = get_model_info(provider, model_choice)
if not model_id:
error_message = f"Error: Model '{model_choice}' not found in GoogleAI"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Build GoogleAI payload
payload = {
"model": model_id,
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"top_p": top_p
}
# Call GoogleAI API
logger.info(f"Sending request to GoogleAI model: {model_id}")
try:
response = call_googleai_api(payload, api_key_override)
# Extract response
ai_response = extract_ai_response(response, provider)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": ai_response}
]
except Exception as e:
error_message = f"GoogleAI API Error: {str(e)}"
logger.error(error_message)
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
else:
error_message = f"Error: Unsupported provider '{provider}'"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
except Exception as e:
error_message = f"Error: {str(e)}"
logger.error(f"Exception during API call: {error_message}")
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
def clear_chat():
"""Reset all inputs"""
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", []
# ==========================================================
# UI CREATION
# ==========================================================
def create_app():
"""Create the CrispChat Gradio application"""
with gr.Blocks(
title="CrispChat",
css="""
.context-size {
font-size: 0.9em;
color: #666;
margin-left: 10px;
}
footer { display: none !important; }
.model-selection-row {
display: flex;
align-items: center;
}
.parameter-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 10px;
}
.vision-badge {
background-color: #4CAF50;
color: white;
padding: 3px 6px;
border-radius: 3px;
font-size: 0.8em;
margin-left: 5px;
}
.provider-selection {
margin-bottom: 10px;
padding: 10px;
border-radius: 5px;
background-color: #f5f5f5;
}
"""
) as demo:
gr.Markdown("""
# 🤖 CrispChat
Chat with AI models from multiple providers: OpenRouter, OpenAI, HuggingFace, Groq, Cohere, Together, Anthropic, and Google AI.
""")
with gr.Row():
with gr.Column(scale=2):
# Chatbot interface
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_label=False,
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg"),
elem_id="chat-window",
type="messages" # use the new format
)
with gr.Row():
message = gr.Textbox(
placeholder="Type your message here...",
label="Message",
lines=2,
elem_id="message-input",
scale=4
)
with gr.Row():
with gr.Column(scale=3):
submit_btn = gr.Button("Send", variant="primary", elem_id="send-btn")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear Chat", variant="secondary")
# Container for conditionally showing image upload
with gr.Row(visible=True) as image_upload_container:
# Image upload
with gr.Accordion("Upload Images (for vision models)", open=False):
images = gr.File(
label="Uploaded Images",
file_types=["image"],
file_count="multiple"
)
image_upload_btn = gr.UploadButton(
label="Upload Images",
file_types=["image"],
file_count="multiple"
)
# Document upload
with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
documents = gr.File(
label="Uploaded Documents",
file_types=[".pdf", ".md", ".txt"],
file_count="multiple"
)
with gr.Column(scale=1):
with gr.Group(elem_classes="provider-selection"):
gr.Markdown("### Provider Selection")
# Provider selection
provider_choice = gr.Radio(
choices=["OpenRouter", "OpenAI", "HuggingFace", "Groq", "Cohere", "Together", "Anthropic", "Poe", "GoogleAI"],
value="OpenRouter",
label="AI Provider"
)
# API key input with separate fields for each provider
with gr.Accordion("API Keys", open=False):
gr.Markdown("Enter API keys directly or set them as environment variables")
openrouter_api_key = gr.Textbox(
placeholder="Enter OpenRouter API key",
label="OpenRouter API Key",
type="password",
value=OPENROUTER_API_KEY if OPENROUTER_API_KEY else ""
)
poe_api_key = gr.Textbox(
placeholder="Enter Poe API key",
label="Poe API Key",
type="password",
value=POE_API_KEY if POE_API_KEY else ""
)
openai_api_key = gr.Textbox(
placeholder="Enter OpenAI API key",
label="OpenAI API Key",
type="password",
value=OPENAI_API_KEY if OPENAI_API_KEY else ""
)
hf_api_key = gr.Textbox(
placeholder="Enter HuggingFace API key",
label="HuggingFace API Key",
type="password",
value=HF_API_KEY if HF_API_KEY else ""
)
groq_api_key = gr.Textbox(
placeholder="Enter Groq API key",
label="Groq API Key",
type="password",
value=GROQ_API_KEY if GROQ_API_KEY else ""
)
cohere_api_key = gr.Textbox(
placeholder="Enter Cohere API key",
label="Cohere API Key",
type="password",
value=COHERE_API_KEY if COHERE_API_KEY else ""
)
together_api_key = gr.Textbox(
placeholder="Enter Together API key",
label="Together API Key",
type="password",
value=TOGETHER_API_KEY if TOGETHER_API_KEY else ""
)
# Add Anthropic API key
anthropic_api_key = gr.Textbox(
placeholder="Enter Anthropic API key",
label="Anthropic API Key",
type="password",
value=os.environ.get("ANTHROPIC_API_KEY", "")
)
googleai_api_key = gr.Textbox(
placeholder="Enter Google AI API key",
label="Google AI API Key",
type="password",
value=GOOGLEAI_API_KEY if GOOGLEAI_API_KEY else ""
)
with gr.Group():
gr.Markdown("### Model Selection")
with gr.Row(elem_classes="model-selection-row"):
model_search = gr.Textbox(
placeholder="Search models...",
label="",
show_label=False
)
# Provider-specific model dropdowns
openrouter_model = gr.Dropdown(
choices=[model[0] for model in OPENROUTER_ALL_MODELS],
value=OPENROUTER_ALL_MODELS[0][0] if OPENROUTER_ALL_MODELS else None,
label="OpenRouter Model",
elem_id="openrouter-model-choice",
visible=True
)
# Add Poe model dropdown
poe_model = gr.Dropdown(
choices=list(POE_MODELS.keys()),
value="chinchilla" if "chinchilla" in POE_MODELS else None,
label="Poe Model",
elem_id="poe-model-choice",
visible=False
)
openai_model = gr.Dropdown(
choices=list(OPENAI_MODELS.keys()),
value="gpt-3.5-turbo" if "gpt-3.5-turbo" in OPENAI_MODELS else None,
label="OpenAI Model",
elem_id="openai-model-choice",
visible=False
)
hf_model = gr.Dropdown(
choices=list(HUGGINGFACE_MODELS.keys()),
value="mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in HUGGINGFACE_MODELS else None,
label="HuggingFace Model",
elem_id="hf-model-choice",
visible=False
)
groq_model = gr.Dropdown(
choices=list(GROQ_MODELS.keys()),
value="llama-3.1-8b-instant" if "llama-3.1-8b-instant" in GROQ_MODELS else None,
label="Groq Model",
elem_id="groq-model-choice",
visible=False
)
cohere_model = gr.Dropdown(
choices=list(COHERE_MODELS.keys()),
value="command-r-plus" if "command-r-plus" in COHERE_MODELS else None,
label="Cohere Model",
elem_id="cohere-model-choice",
visible=False
)
together_model = gr.Dropdown(
choices=list(TOGETHER_MODELS.keys()),
value="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo" if "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo" in TOGETHER_MODELS else None,
label="Together Model",
elem_id="together-model-choice",
visible=False
)
# Add Anthropic model dropdown
anthropic_model = gr.Dropdown(
choices=list(ANTHROPIC_MODELS.keys()),
value="claude-3-5-sonnet-20241022" if "claude-3-5-sonnet-20241022" in ANTHROPIC_MODELS else None,
label="Anthropic Model",
elem_id="anthropic-model-choice",
visible=False
)
googleai_model = gr.Dropdown(
choices=list(GOOGLEAI_MODELS.keys()),
value="gemini-1.5-pro" if "gemini-1.5-pro" in GOOGLEAI_MODELS else None,
label="Google AI Model",
elem_id="googleai-model-choice",
visible=False
)
context_display = gr.Textbox(
value=update_context_display("OpenRouter", OPENROUTER_ALL_MODELS[0][0]),
label="Context Size",
interactive=False,
elem_classes="context-size"
)
with gr.Accordion("Generation Parameters", open=False):
with gr.Group(elem_classes="parameter-grid"):
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.8,
step=0.1,
label="Top P"
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
presence_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Presence Penalty"
)
reasoning_effort = gr.Radio(
["none", "low", "medium", "high"],
value="none",
label="Reasoning Effort (OpenRouter)"
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Repetition Penalty"
)
top_k = gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top K"
)
min_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.05,
label="Min P"
)
with gr.Column():
seed = gr.Number(
value=0,
label="Seed (0 for random)",
precision=0
)
top_a = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.05,
label="Top A"
)
stream_output = gr.Checkbox(
label="Stream Output",
value=False
)
with gr.Row():
response_format = gr.Radio(
["default", "json_object"],
value="default",
label="Response Format"
)
gr.Markdown("""
* **json_object**: Forces the model to respond with valid JSON only.
* Only available on certain models - check model support.
""")
# Custom instructing options
with gr.Accordion("Custom Instructions", open=False):
system_message = gr.Textbox(
placeholder="Enter a system message to guide the model's behavior...",
label="System Message",
lines=3
)
transforms = gr.CheckboxGroup(
["prompt_optimize", "prompt_distill", "prompt_compress"],
label="Prompt Transforms (OpenRouter specific)"
)
gr.Markdown("""
* **prompt_optimize**: Improve prompt for better responses.
* **prompt_distill**: Compress prompt to use fewer tokens without changing meaning.
* **prompt_compress**: Aggressively compress prompt to fit larger contexts.
""")
# Add a model information section
with gr.Accordion("About Selected Model", open=False):
model_info_display = gr.HTML(
value=update_model_info("OpenRouter", OPENROUTER_ALL_MODELS[0][0])
)
is_vision_indicator = gr.Checkbox(
label="Supports Images",
value=is_vision_model("OpenRouter", OPENROUTER_ALL_MODELS[0][0]),
interactive=False
)
# Add usage instructions
with gr.Accordion("Usage Instructions", open=False):
gr.Markdown("""
## Basic Usage
1. Type your message in the input box
2. Select a provider and model
3. Click "Send" or press Enter
## Working with Files
- **Images**: Upload images to use with vision-capable models
- **Documents**: Upload PDF, Markdown, or text files to analyze their content
## Provider Information
- **OpenRouter**: Free access to various models with context window sizes up to 2M tokens
- **OpenAI**: Requires an API key, includes GPT-3.5 and GPT-4 models
- **HuggingFace**: Direct access to open models, some models require API key
- **Groq**: High-performance inference, requires API key
- **Cohere**: Specialized in language understanding, requires API key
- **Together**: Access to high-quality open models, requires API key
- **Anthropic**: Claude models with strong reasoning capabilities, requires API key
- **GoogleAI**: Google's Gemini models, requires API key
## Advanced Parameters
- **Temperature**: Controls randomness (higher = more creative, lower = more deterministic)
- **Max Tokens**: Maximum length of the response
- **Top P**: Nucleus sampling threshold (higher = consider more tokens)
- **Reasoning Effort**: Some models can show their reasoning process (OpenRouter only)
""")
# Add a footer with version info
footer_md = gr.Markdown("""
---
### CrispChat v1.2
Built with ❤️ using Gradio and multiple AI provider APIs | Context sizes shown next to model names
""")
# Define event handlers
def toggle_model_dropdowns(provider):
"""Show/hide model dropdowns based on provider selection"""
return {
openrouter_model: gr.update(visible=(provider == "OpenRouter")),
openai_model: gr.update(visible=(provider == "OpenAI")),
hf_model: gr.update(visible=(provider == "HuggingFace")),
groq_model: gr.update(visible=(provider == "Groq")),
cohere_model: gr.update(visible=(provider == "Cohere")),
together_model: gr.update(visible=(provider == "Together")),
anthropic_model: gr.update(visible=(provider == "Anthropic")),
poe_model: gr.update(visible=(provider == "Poe")),
googleai_model: gr.update(visible=(provider == "GoogleAI"))
}
def update_context_for_provider(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model):
"""Update context display based on selected provider and model"""
if provider == "OpenRouter":
return update_context_display(provider, openrouter_model)
elif provider == "OpenAI":
return update_context_display(provider, openai_model)
elif provider == "HuggingFace":
return update_context_display(provider, hf_model)
elif provider == "Groq":
return update_context_display(provider, groq_model)
elif provider == "Cohere":
return update_context_display(provider, cohere_model)
elif provider == "Together":
return update_context_display(provider, together_model)
elif provider == "Anthropic":
return update_context_display(provider, anthropic_model)
elif provider == "Poe":
return update_context_display(provider, poe_model)
elif provider == "GoogleAI":
return update_context_display(provider, googleai_model)
return "Unknown"
def update_model_info_for_provider(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model):
"""Update model info based on selected provider and model"""
if provider == "OpenRouter":
return update_model_info(provider, openrouter_model)
elif provider == "OpenAI":
return update_model_info(provider, openai_model)
elif provider == "HuggingFace":
return update_model_info(provider, hf_model)
elif provider == "Groq":
return update_model_info(provider, groq_model)
elif provider == "Cohere":
return update_model_info(provider, cohere_model)
elif provider == "Together":
return update_model_info(provider, together_model)
elif provider == "Anthropic":
return update_model_info(provider, anthropic_model)
elif provider == "Poe":
return update_model_info(provider, poe_model)
elif provider == "GoogleAI":
return update_model_info(provider, googleai_model)
return "<p>Model information not available</p>"
def update_vision_indicator(provider, model_choice=None):
"""Update the vision capability indicator"""
# Simplified - don't call get_current_model since it causes issues
if model_choice is None:
# Just check if the provider generally supports vision
return provider in VISION_MODELS and len(VISION_MODELS[provider]) > 0
return is_vision_model(provider, model_choice)
def update_image_upload_visibility(provider, model_choice=None):
"""Show/hide image upload based on model vision capabilities"""
# Simplified
is_vision = update_vision_indicator(provider, model_choice)
return gr.update(visible=is_vision)
# Search model function
def search_openrouter_models(search_term):
"""Filter OpenRouter models based on search term"""
all_models = [model[0] for model in OPENROUTER_ALL_MODELS]
if not search_term:
return gr.update(choices=all_models, value=all_models[0] if all_models else None)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
return gr.update(choices=all_models, value=all_models[0] if all_models else None)
def search_openai_models(search_term):
"""Filter OpenAI models based on search term"""
all_models = list(OPENAI_MODELS.keys())
if not search_term:
return gr.update(choices=all_models, value="gpt-3.5-turbo" if "gpt-3.5-turbo" in all_models else all_models[0] if all_models else None)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
return gr.update(choices=all_models, value="gpt-3.5-turbo" if "gpt-3.5-turbo" in all_models else all_models[0] if all_models else None)
def search_hf_models(search_term):
"""Filter HuggingFace models based on search term"""
all_models = list(HUGGINGFACE_MODELS.keys())
if not search_term:
default_model = "mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def search_models_generic(search_term, model_dict, default_model=None):
"""Generic model search function to reduce code duplication"""
all_models = list(model_dict.keys())
if not all_models:
return gr.update(choices=[], value=None)
if not search_term:
return gr.update(choices=all_models, value=default_model if default_model in all_models else all_models[0])
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
return gr.update(choices=all_models, value=default_model if default_model in all_models else all_models[0])
def search_poe_models(search_term):
"""Filter Poe models based on search term"""
return search_models_generic(search_term, POE_MODELS, "chinchilla")
def search_groq_models(search_term):
"""Filter Groq models based on search term"""
all_models = list(GROQ_MODELS.keys())
if not search_term:
default_model = "llama-3.1-8b-instant" if "llama-3.1-8b-instant" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "llama-3.1-8b-instant" if "llama-3.1-8b-instant" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def search_cohere_models(search_term):
"""Filter Cohere models based on search term"""
all_models = list(COHERE_MODELS.keys())
if not search_term:
default_model = "command-r-plus" if "command-r-plus" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "command-r-plus" if "command-r-plus" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def search_together_models(search_term):
"""Filter Together models based on search term"""
all_models = list(TOGETHER_MODELS.keys())
if not search_term:
default_model = "meta-llama/Llama-3.1-8B-Instruct" if "meta-llama/Llama-3.1-8B-Instruct" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "meta-llama/Llama-3.1-8B-Instruct" if "meta-llama/Llama-3.1-8B-Instruct" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def search_anthropic_models(search_term):
"""Filter Anthropic models based on search term"""
all_models = list(ANTHROPIC_MODELS.keys())
if not search_term:
return gr.update(choices=all_models, value="claude-3-5-sonnet-20241022" if "claude-3-5-sonnet-20241022" in all_models else all_models[0] if all_models else None)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
return gr.update(choices=all_models, value="claude-3-5-sonnet-20241022" if "claude-3-5-sonnet-20241022" in all_models else all_models[0] if all_models else None)
def search_googleai_models(search_term):
"""Filter GoogleAI models based on search term"""
all_models = list(GOOGLEAI_MODELS.keys())
if not search_term:
default_model = "gemini-1.5-pro" if "gemini-1.5-pro" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
filtered_models = [model for model in all_models if search_term.lower() in model.lower()]
if filtered_models:
return gr.update(choices=filtered_models, value=filtered_models[0])
else:
default_model = "gemini-1.5-pro" if "gemini-1.5-pro" in all_models else all_models[0] if all_models else None
return gr.update(choices=all_models, value=default_model)
def get_current_model(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model,
together_model, anthropic_model, poe_model, googleai_model):
"""Get the currently selected model based on provider"""
if provider == "OpenRouter":
return openrouter_model
elif provider == "OpenAI":
return openai_model
elif provider == "HuggingFace":
return hf_model
elif provider == "Groq":
return groq_model
elif provider == "Cohere":
return cohere_model
elif provider == "Together":
return together_model
elif provider == "Anthropic":
return anthropic_model
elif provider == "Poe":
return poe_model
elif provider == "GoogleAI":
return googleai_model
return None
# Process uploaded images
image_upload_btn.upload(
fn=lambda files: files,
inputs=image_upload_btn,
outputs=images
)
# Set up provider selection event
provider_choice.change(
fn=toggle_model_dropdowns,
inputs=provider_choice,
outputs=[
openrouter_model,
openai_model,
hf_model,
groq_model,
cohere_model,
together_model,
anthropic_model,
poe_model,
googleai_model
]
).then(
fn=update_context_for_provider,
inputs=[
provider_choice,
openrouter_model,
openai_model,
hf_model,
groq_model,
cohere_model,
together_model,
anthropic_model,
poe_model,
googleai_model
],
outputs=context_display
).then(
fn=update_model_info_for_provider,
inputs=[
provider_choice,
openrouter_model,
openai_model,
hf_model,
groq_model,
cohere_model,
together_model,
anthropic_model,
poe_model,
googleai_model
],
outputs=model_info_display
).then(
# Fix this with correct number of args using a simpler approach
fn=lambda provider: update_vision_indicator(provider, None),
inputs=provider_choice,
outputs=is_vision_indicator
).then(
# Same here
fn=lambda provider: update_image_upload_visibility(provider, None),
inputs=provider_choice,
outputs=image_upload_container
)
# Set up model search event - return model dropdown updates
model_search.change(
fn=lambda provider, search: [
search_openrouter_models(search) if provider == "OpenRouter" else gr.update(),
search_openai_models(search) if provider == "OpenAI" else gr.update(),
search_hf_models(search) if provider == "HuggingFace" else gr.update(),
search_groq_models(search) if provider == "Groq" else gr.update(),
search_cohere_models(search) if provider == "Cohere" else gr.update(),
search_together_models(search) if provider == "Together" else gr.update(),
search_anthropic_models(search) if provider == "Anthropic" else gr.update(),
search_poe_models(search) if provider == "Poe" else gr.update(),
search_googleai_models(search) if provider == "GoogleAI" else gr.update()
],
inputs=[provider_choice, model_search],
outputs=[
openrouter_model, openai_model, hf_model, groq_model,
cohere_model, together_model, anthropic_model, poe_model, googleai_model
]
)
# Set up model change events to update context display and model info
openrouter_model.change(
fn=lambda model: update_context_display("OpenRouter", model),
inputs=openrouter_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("OpenRouter", model),
inputs=openrouter_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("OpenRouter", model),
inputs=openrouter_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("OpenRouter", model),
inputs=openrouter_model,
outputs=image_upload_container
)
# Event handler for Poe model change
poe_model.change(
fn=lambda model: update_context_display("Poe", model),
inputs=poe_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Poe", model),
inputs=poe_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("Poe", model),
inputs=poe_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("Poe", model),
inputs=poe_model,
outputs=image_upload_container
)
openai_model.change(
fn=lambda model: update_context_display("OpenAI", model),
inputs=openai_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("OpenAI", model),
inputs=openai_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("OpenAI", model),
inputs=openai_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("OpenAI", model),
inputs=openai_model,
outputs=image_upload_container
)
hf_model.change(
fn=lambda model: update_context_display("HuggingFace", model),
inputs=hf_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("HuggingFace", model),
inputs=hf_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("HuggingFace", model),
inputs=hf_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("HuggingFace", model),
inputs=hf_model,
outputs=image_upload_container
)
groq_model.change(
fn=lambda model: update_context_display("Groq", model),
inputs=groq_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Groq", model),
inputs=groq_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("Groq", model),
inputs=groq_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("Groq", model),
inputs=groq_model,
outputs=image_upload_container
)
cohere_model.change(
fn=lambda model: update_context_display("Cohere", model),
inputs=cohere_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Cohere", model),
inputs=cohere_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("Cohere", model),
inputs=cohere_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("Cohere", model),
inputs=cohere_model,
outputs=image_upload_container
)
together_model.change(
fn=lambda model: update_context_display("Together", model),
inputs=together_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Together", model),
inputs=together_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("Together", model),
inputs=together_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("Together", model),
inputs=together_model,
outputs=image_upload_container
)
anthropic_model.change(
fn=lambda model: update_context_display("Anthropic", model),
inputs=anthropic_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("Anthropic", model),
inputs=anthropic_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("Anthropic", model),
inputs=anthropic_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("Anthropic", model),
inputs=anthropic_model,
outputs=image_upload_container
)
googleai_model.change(
fn=lambda model: update_context_display("GoogleAI", model),
inputs=googleai_model,
outputs=context_display
).then(
fn=lambda model: update_model_info("GoogleAI", model),
inputs=googleai_model,
outputs=model_info_display
).then(
fn=lambda model: update_vision_indicator("GoogleAI", model),
inputs=googleai_model,
outputs=is_vision_indicator
).then(
fn=lambda model: update_image_upload_visibility("GoogleAI", model),
inputs=googleai_model,
outputs=image_upload_container
)
def handle_search(provider, search_term):
"""Handle search based on provider"""
if provider == "OpenRouter":
return search_openrouter_models(search_term)
elif provider == "OpenAI":
return search_openai_models(search_term)
elif provider == "HuggingFace":
return search_hf_models(search_term)
elif provider == "Groq":
return search_groq_models(search_term)
elif provider == "Cohere":
return search_cohere_models(search_term)
elif provider == "Together":
return search_together_models(search_term)
elif provider == "Anthropic":
return search_anthropic_models(search_term)
elif provider == "GoogleAI":
return search_googleai_models(search_term)
return None
# Set up submission event
def submit_message(message, history, provider,
openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model,
temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms,
openrouter_api_key, openai_api_key, hf_api_key, groq_api_key, cohere_api_key, together_api_key, anthropic_api_key, poe_api_key, googleai_api_key):
"""Submit message to selected provider and model"""
# Get the currently selected model
model_choice = get_current_model(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model,
together_model, anthropic_model, poe_model, googleai_model)
# Check if model is selected
if not model_choice:
error_message = f"Error: No model selected for provider {provider}"
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": error_message}
]
# Select the appropriate API key based on the provider
api_key_override = None
if provider == "OpenRouter" and openrouter_api_key:
api_key_override = openrouter_api_key
elif provider == "OpenAI" and openai_api_key:
api_key_override = openai_api_key
elif provider == "HuggingFace" and hf_api_key:
api_key_override = hf_api_key
elif provider == "Groq" and groq_api_key:
api_key_override = groq_api_key
elif provider == "Cohere" and cohere_api_key:
api_key_override = cohere_api_key
elif provider == "Together" and together_api_key:
api_key_override = together_api_key
elif provider == "Anthropic" and anthropic_api_key:
api_key_override = anthropic_api_key
elif provider == "Poe" and poe_api_key:
api_key_override = poe_api_key
elif provider == "GoogleAI" and googleai_api_key:
api_key_override = googleai_api_key
# Call the ask_ai function with the appropriate parameters
return ask_ai(
message=message,
history=history,
provider=provider,
model_choice=model_choice,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
repetition_penalty=repetition_penalty,
top_k=top_k,
min_p=min_p,
seed=seed,
top_a=top_a,
stream_output=stream_output,
response_format=response_format,
images=images,
documents=documents,
reasoning_effort=reasoning_effort,
system_message=system_message,
transforms=transforms,
api_key_override=api_key_override
)
def clean_message(message):
"""Clean the message from style tags"""
if isinstance(message, str):
import re
# Remove style tags
message = re.sub(r'<userStyle>.*?</userStyle>', '', message)
return message
# Submit button click event
submit_btn.click(
fn=lambda *args: submit_message(clean_message(args[0]), *args[1:]),
inputs=[
message, chatbot, provider_choice,
openrouter_model, openai_model, hf_model, groq_model, cohere_model,
together_model, anthropic_model, poe_model, googleai_model,
temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms,
openrouter_api_key, openai_api_key, hf_api_key, groq_api_key, cohere_api_key,
together_api_key, anthropic_api_key, poe_api_key, googleai_api_key
],
outputs=chatbot,
show_progress="minimal",
).then(
fn=lambda: "", # Clear message box after sending
inputs=None,
outputs=message
)
# Also submit on Enter key
message.submit(
fn=submit_message,
inputs=[
message, chatbot, provider_choice,
openrouter_model, openai_model, hf_model, groq_model, cohere_model,
together_model, anthropic_model, poe_model, googleai_model,
temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty,
top_k, min_p, seed, top_a, stream_output, response_format,
images, documents, reasoning_effort, system_message, transforms,
openrouter_api_key, openai_api_key, hf_api_key, groq_api_key, cohere_api_key,
together_api_key, anthropic_api_key, poe_api_key, googleai_api_key
],
outputs=chatbot,
show_progress="minimal",
).then(
fn=lambda: "", # Clear message box after sending
inputs=None,
outputs=message
)
# Clear chat button
clear_btn.click(
fn=clear_chat,
inputs=[],
outputs=[
chatbot, message, images, documents, temperature,
max_tokens, top_p, frequency_penalty, presence_penalty,
repetition_penalty, top_k, min_p, seed, top_a, stream_output,
response_format, reasoning_effort, system_message, transforms
]
)
return demo
# Launch the app
if __name__ == "__main__":
# Check API keys and print status
missing_keys = []
if not OPENROUTER_API_KEY:
logger.warning("WARNING: OPENROUTER_API_KEY environment variable is not set")
missing_keys.append("OpenRouter")
# Add Poe
if not POE_API_KEY:
logger.warning("WARNING: POE_API_KEY environment variable is not set")
missing_keys.append("Poe")
if not ANTHROPIC_API_KEY:
logger.warning("WARNING: ANTHROPIC_API_KEY environment variable is not set")
missing_keys.append("Anthropic")
if not OPENAI_API_KEY:
logger.warning("WARNING: OPENAI_API_KEY environment variable is not set")
missing_keys.append("OpenAI")
if not GROQ_API_KEY:
logger.warning("WARNING: GROQ_API_KEY environment variable is not set")
missing_keys.append("Groq")
if not COHERE_API_KEY:
logger.warning("WARNING: COHERE_API_KEY environment variable is not set")
missing_keys.append("Cohere")
if not TOGETHER_API_KEY:
logger.warning("WARNING: TOGETHER_API_KEY environment variable is not set")
missing_keys.append("Together")
if not GOOGLEAI_API_KEY:
logger.warning("WARNING: GOOGLEAI_API_KEY environment variable is not set")
missing_keys.append("GoogleAI")
if missing_keys:
print("Missing API keys for the following providers:")
for key in missing_keys:
print(f"- {key}")
print("\nYou can still use the application, but some providers will require API keys.")
print("You can provide API keys through environment variables or use the API Key Override field.")
if "OpenRouter" in missing_keys:
print("\nNote: OpenRouter offers free tier access to many models!")
#if "OVH" not in missing_keys and "Cerebras" not in missing_keys:
# print("\nNote: OVH AI Endpoints (beta) and Cerebras offer free usage tiers!")
print("\nStarting CrispChat application...")
demo = create_app()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
show_error=True
) |