CrispChat / app.py
cstr's picture
Update app.py
a13c2bb verified
raw
history blame
13.3 kB
import os
import base64
import gradio as gr
import requests
from io import BytesIO
import json
from PIL import Image
# Get API key from environment variable for security
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
# Model information
free_models = [
("Google: Gemini Pro 2.0 Experimental (free)", "google/gemini-2.0-pro-exp-02-05:free", 0, 0, 2000000),
("Google: Gemini 2.0 Flash Thinking Experimental 01-21 (free)", "google/gemini-2.0-flash-thinking-exp:free", 0, 0, 1048576),
("Google: Gemini Flash 2.0 Experimental (free)", "google/gemini-2.0-flash-exp:free", 0, 0, 1048576),
("Google: Gemini Pro 2.5 Experimental (free)", "google/gemini-2.5-pro-exp-03-25:free", 0, 0, 1000000),
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 0, 0, 1000000),
("DeepSeek: DeepSeek R1 Zero (free)", "deepseek/deepseek-r1-zero:free", 0, 0, 163840),
("DeepSeek: R1 (free)", "deepseek/deepseek-r1:free", 0, 0, 163840),
("DeepSeek: DeepSeek V3 Base (free)", "deepseek/deepseek-v3-base:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 0324 (free)", "deepseek/deepseek-chat-v3-0324:free", 0, 0, 131072),
("Google: Gemma 3 4B (free)", "google/gemma-3-4b-it:free", 0, 0, 131072),
("Google: Gemma 3 12B (free)", "google/gemma-3-12b-it:free", 0, 0, 131072),
("Nous: DeepHermes 3 Llama 3 8B Preview (free)", "nousresearch/deephermes-3-llama-3-8b-preview:free", 0, 0, 131072),
("Qwen: Qwen2.5 VL 72B Instruct (free)", "qwen/qwen2.5-vl-72b-instruct:free", 0, 0, 131072),
("DeepSeek: DeepSeek V3 (free)", "deepseek/deepseek-chat:free", 0, 0, 131072),
("NVIDIA: Llama 3.1 Nemotron 70B Instruct (free)", "nvidia/llama-3.1-nemotron-70b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 1B Instruct (free)", "meta-llama/llama-3.2-1b-instruct:free", 0, 0, 131072),
("Meta: Llama 3.2 11B Vision Instruct (free)", "meta-llama/llama-3.2-11b-vision-instruct:free", 0, 0, 131072),
("Meta: Llama 3.1 8B Instruct (free)", "meta-llama/llama-3.1-8b-instruct:free", 0, 0, 131072),
("Mistral: Mistral Nemo (free)", "mistralai/mistral-nemo:free", 0, 0, 128000),
("Mistral: Mistral Small 3.1 24B (free)", "mistralai/mistral-small-3.1-24b-instruct:free", 0, 0, 96000),
("Google: Gemma 3 27B (free)", "google/gemma-3-27b-it:free", 0, 0, 96000),
("Qwen: Qwen2.5 VL 3B Instruct (free)", "qwen/qwen2.5-vl-3b-instruct:free", 0, 0, 64000),
("DeepSeek: R1 Distill Qwen 14B (free)", "deepseek/deepseek-r1-distill-qwen-14b:free", 0, 0, 64000),
("Qwen: Qwen2.5-VL 7B Instruct (free)", "qwen/qwen-2.5-vl-7b-instruct:free", 0, 0, 64000),
("Google: LearnLM 1.5 Pro Experimental (free)", "google/learnlm-1.5-pro-experimental:free", 0, 0, 40960),
("Qwen: QwQ 32B (free)", "qwen/qwq-32b:free", 0, 0, 40000),
("Google: Gemini 2.0 Flash Thinking Experimental (free)", "google/gemini-2.0-flash-thinking-exp-1219:free", 0, 0, 40000),
("Bytedance: UI-TARS 72B (free)", "bytedance-research/ui-tars-72b:free", 0, 0, 32768),
("Qwerky 72b (free)", "featherless/qwerky-72b:free", 0, 0, 32768),
("OlympicCoder 7B (free)", "open-r1/olympiccoder-7b:free", 0, 0, 32768),
("OlympicCoder 32B (free)", "open-r1/olympiccoder-32b:free", 0, 0, 32768),
("Google: Gemma 3 1B (free)", "google/gemma-3-1b-it:free", 0, 0, 32768),
("Reka: Flash 3 (free)", "rekaai/reka-flash-3:free", 0, 0, 32768),
("Dolphin3.0 R1 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 0, 0, 32768),
("Dolphin3.0 Mistral 24B (free)", "cognitivecomputations/dolphin3.0-mistral-24b:free", 0, 0, 32768),
("Mistral: Mistral Small 3 (free)", "mistralai/mistral-small-24b-instruct-2501:free", 0, 0, 32768),
("Qwen2.5 Coder 32B Instruct (free)", "qwen/qwen-2.5-coder-32b-instruct:free", 0, 0, 32768),
("Qwen2.5 72B Instruct (free)", "qwen/qwen-2.5-72b-instruct:free", 0, 0, 32768),
("Meta: Llama 3.2 3B Instruct (free)", "meta-llama/llama-3.2-3b-instruct:free", 0, 0, 20000),
("Qwen: QwQ 32B Preview (free)", "qwen/qwq-32b-preview:free", 0, 0, 16384),
("DeepSeek: R1 Distill Qwen 32B (free)", "deepseek/deepseek-r1-distill-qwen-32b:free", 0, 0, 16000),
("Qwen: Qwen2.5 VL 32B Instruct (free)", "qwen/qwen2.5-vl-32b-instruct:free", 0, 0, 8192),
("Moonshot AI: Moonlight 16B A3B Instruct (free)", "moonshotai/moonlight-16b-a3b-instruct:free", 0, 0, 8192),
("DeepSeek: R1 Distill Llama 70B (free)", "deepseek/deepseek-r1-distill-llama-70b:free", 0, 0, 8192),
("Qwen 2 7B Instruct (free)", "qwen/qwen-2-7b-instruct:free", 0, 0, 8192),
("Google: Gemma 2 9B (free)", "google/gemma-2-9b-it:free", 0, 0, 8192),
("Mistral: Mistral 7B Instruct (free)", "mistralai/mistral-7b-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Mini 128K Instruct (free)", "microsoft/phi-3-mini-128k-instruct:free", 0, 0, 8192),
("Microsoft: Phi-3 Medium 128K Instruct (free)", "microsoft/phi-3-medium-128k-instruct:free", 0, 0, 8192),
("Meta: Llama 3 8B Instruct (free)", "meta-llama/llama-3-8b-instruct:free", 0, 0, 8192),
("OpenChat 3.5 7B (free)", "openchat/openchat-7b:free", 0, 0, 8192),
("Meta: Llama 3.3 70B Instruct (free)", "meta-llama/llama-3.3-70b-instruct:free", 0, 0, 8000),
("AllenAI: Molmo 7B D (free)", "allenai/molmo-7b-d:free", 0, 0, 4096),
("Rogue Rose 103B v0.2 (free)", "sophosympatheia/rogue-rose-103b-v0.2:free", 0, 0, 4096),
("Toppy M 7B (free)", "undi95/toppy-m-7b:free", 0, 0, 4096),
("Hugging Face: Zephyr 7B (free)", "huggingfaceh4/zephyr-7b-beta:free", 0, 0, 4096),
("MythoMax 13B (free)", "gryphe/mythomax-l2-13b:free", 0, 0, 4096),
]
# Filter for vision models
vision_model_ids = [
"meta-llama/llama-3.2-11b-vision-instruct:free",
"qwen/qwen2.5-vl-72b-instruct:free",
"qwen/qwen2.5-vl-3b-instruct:free",
"qwen/qwen2.5-vl-32b-instruct:free",
"qwen/qwen-2.5-vl-7b-instruct:free",
"google/gemini-2.0-pro-exp-02-05:free",
"google/gemini-2.5-pro-exp-03-25:free"
]
# Prefilter vision models
vision_models = [(name, model_id) for name, model_id, _, _, _ in free_models if model_id in vision_model_ids]
text_models = [(name, model_id) for name, model_id, _, _, _ in free_models]
def encode_image(image):
"""Convert PIL Image to base64 string"""
buffered = BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def process_message(message, chat_history, model_name, uploaded_image=None):
"""Process message and return model response"""
model_id = next((model_id for name, model_id, _, _, _ in free_models if name == model_name), text_models[0][1])
# Check if API key is set
if not OPENROUTER_API_KEY:
return "Please set your OpenRouter API key in the environment variables.", chat_history
# Setup headers and URL
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
"HTTP-Referer": "https://huggingface.co/spaces", # Replace with your actual space URL in production
}
url = "https://openrouter.ai/api/v1/chat/completions"
# Build message content
messages = []
# Add chat history
for human_msg, ai_msg in chat_history:
messages.append({"role": "user", "content": human_msg})
messages.append({"role": "assistant", "content": ai_msg})
# Add current message
if uploaded_image:
# Image processing for vision models
base64_image = encode_image(uploaded_image)
content = [
{"type": "text", "text": message},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{base64_image}"
}
}
]
messages.append({"role": "user", "content": content})
else:
messages.append({"role": "user", "content": message})
# Build request data
data = {
"model": model_id,
"messages": messages
}
try:
# Make API call
response = requests.post(url, headers=headers, json=data)
response.raise_for_status()
# Parse response
result = response.json()
reply = result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
# Update chat history
chat_history.append((message, reply))
return reply, chat_history
except Exception as e:
return f"Error: {str(e)}", chat_history
# Create a nice CSS theme
css = """
.gradio-container {
font-family: 'Segoe UI', Arial, sans-serif;
}
#chat-message {
min-height: 100px;
}
#model-selector {
max-width: 100%;
}
.app-header {
text-align: center;
margin-bottom: 10px;
}
.app-header h1 {
font-weight: 700;
color: #2C3E50;
}
.app-header p {
color: #7F8C8D;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("""
<div class="app-header">
<h1>🔆 CrispChat</h1>
<p>Chat with free OpenRouter AI models - supports text and images</p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=500,
show_copy_button=True,
show_share_button=False,
elem_id="chatbot",
layout="panel",
)
with gr.Row():
user_message = gr.Textbox(
placeholder="Type your message here...",
show_label=False,
elem_id="chat-message",
scale=10
)
image_upload = gr.Image(
type="pil",
label="Image Upload (optional)",
show_label=False,
tool="select",
scale=2
)
submit_btn = gr.Button("Send", scale=1, variant="primary")
with gr.Column(scale=1):
with gr.Accordion("Model Selection", open=True):
using_vision = gr.Checkbox(label="Using image", value=False)
model_selector = gr.Dropdown(
choices=[name for name, _ in text_models],
value=text_models[0][0],
label="Select Model",
elem_id="model-selector"
)
with gr.Accordion("Tips", open=True):
gr.Markdown("""
* For best results with images, select a vision-capable model
* Text models can handle up to 32k tokens
* Try different models for different tasks
* API output is in Markdown format for code highlighting
""")
with gr.Accordion("API", open=False):
api_url = gr.Textbox(
value="https://[your-space-name].hf.space/api/generate",
label="API Endpoint",
interactive=False
)
api_docs = gr.Markdown("""
```json
POST /api/generate
{
"message": "Your message here",
"model": "model-id-here",
"image_data": "optional-base64-encoded-image"
}
```
""")
# Define events
def update_model_selector(use_vision):
if use_vision:
return gr.Dropdown(choices=[name for name, _ in vision_models], value=vision_models[0][0])
else:
return gr.Dropdown(choices=[name for name, _ in text_models], value=text_models[0][0])
using_vision.change(
fn=update_model_selector,
inputs=using_vision,
outputs=model_selector
)
# Submit function
def on_submit(message, history, model, image):
if not message and not image:
return "", history
return "", process_message(message, history, model, image)
# Set up submission events
submit_btn.click(
on_submit,
inputs=[user_message, chatbot, model_selector, image_upload],
outputs=[user_message, chatbot]
)
user_message.submit(
on_submit,
inputs=[user_message, chatbot, model_selector, image_upload],
outputs=[user_message, chatbot]
)
# API endpoint for external access
@demo.load(api_name="generate")
def api_generate(message, model=None, image_data=None):
"""API endpoint for generating responses"""
model_name = model or text_models[0][0]
# Process image if provided
image = None
if image_data:
try:
# Decode base64 image
image_bytes = base64.b64decode(image_data)
image = Image.open(BytesIO(image_bytes))
except Exception as e:
return {"error": f"Image processing error: {str(e)}"}
# Generate response
try:
response, _ = process_message(message, [], model_name, image)
return {"response": response}
except Exception as e:
return {"error": f"Error generating response: {str(e)}"}
if __name__ == "__main__":
demo.launch()