import os import gradio as gr import requests import json import base64 import logging import io import time from typing import List, Dict, Any, Union, Tuple, Optional from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Gracefully import libraries with fallbacks try: from PIL import Image HAS_PIL = True except ImportError: logger.warning("PIL not installed. Image processing will be limited.") HAS_PIL = False try: import PyPDF2 HAS_PYPDF2 = True except ImportError: logger.warning("PyPDF2 not installed. PDF processing will be limited.") HAS_PYPDF2 = False try: import markdown HAS_MARKDOWN = True except ImportError: logger.warning("Markdown not installed. Markdown processing will be limited.") HAS_MARKDOWN = False try: import openai HAS_OPENAI = True except ImportError: logger.warning("OpenAI package not installed. OpenAI models will be unavailable.") HAS_OPENAI = False try: from groq import Groq HAS_GROQ = True except ImportError: logger.warning("Groq client not installed. Groq API will be unavailable.") HAS_GROQ = False try: import cohere HAS_COHERE = True except ImportError: logger.warning("Cohere package not installed. Cohere models will be unavailable.") HAS_COHERE = False try: from huggingface_hub import InferenceClient HAS_HF = True except ImportError: logger.warning("HuggingFace hub not installed. HuggingFace models will be limited.") HAS_HF = False # API keys from environment OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "") OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "") GROQ_API_KEY = os.environ.get("GROQ_API_KEY", "") COHERE_API_KEY = os.environ.get("COHERE_API_KEY", "") HF_API_KEY = os.environ.get("HF_API_KEY", "") TOGETHER_API_KEY = os.environ.get("TOGETHER_API_KEY", "") GOOGLEAI_API_KEY = os.environ.get("GOOGLEAI_API_KEY", "") ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY", "") POE_API_KEY = os.environ.get("POE_API_KEY", "") # Print application startup message with timestamp current_time = time.strftime("%Y-%m-%d %H:%M:%S") print(f"===== Application Startup at {current_time} =====\n") # ========================================================== # MODEL DEFINITIONS # ========================================================== # OPENROUTER MODELS # These are the original models from the provided code OPENROUTER_MODELS = [ # 1M+ Context Models {"category": "1M+ Context", "models": [ ("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000), ("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576), ("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576), ("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000), ("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000), ]}, # 100K-1M Context Models {"category": "100K+ Context", "models": [ ("DeepSeek: DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840), ("DeepSeek: R1", "deepseek/deepseek-r1:free", 163840), ("DeepSeek: DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072), ("DeepSeek: DeepSeek V3 0324", "deepseek/deepseek-chat-v3-0324:free", 131072), ("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072), ("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072), ("Nous: DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072), ("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072), ("DeepSeek: DeepSeek V3", "deepseek/deepseek-chat:free", 131072), ("NVIDIA: Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072), ("Meta: Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072), ("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072), ("Meta: Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072), ("Mistral: Mistral Nemo", "mistralai/mistral-nemo:free", 128000), ]}, # 64K-100K Context Models {"category": "64K-100K Context", "models": [ ("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000), ("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000), ("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000), ("DeepSeek: R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000), ("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000), ]}, # 32K-64K Context Models {"category": "32K-64K Context", "models": [ ("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960), ("Qwen: QwQ 32B", "qwen/qwq-32b:free", 40000), ("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000), ("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768), ("Qwerky 72b", "featherless/qwerky-72b:free", 32768), ("OlympicCoder 7B", "open-r1/olympiccoder-7b:free", 32768), ("OlympicCoder 32B", "open-r1/olympiccoder-32b:free", 32768), ("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768), ("Reka: Flash 3", "rekaai/reka-flash-3:free", 32768), ("Dolphin3.0 R1 Mistral 24B", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 32768), ("Dolphin3.0 Mistral 24B", "cognitivecomputations/dolphin3.0-mistral-24b:free", 32768), ("Mistral: Mistral Small 3", "mistralai/mistral-small-24b-instruct-2501:free", 32768), ("Qwen2.5 Coder 32B Instruct", "qwen/qwen-2.5-coder-32b-instruct:free", 32768), ("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768), ]}, # 8K-32K Context Models {"category": "8K-32K Context", "models": [ ("Meta: Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000), ("Qwen: QwQ 32B Preview", "qwen/qwq-32b-preview:free", 16384), ("DeepSeek: R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000), ("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192), ("Moonshot AI: Moonlight 16B A3B Instruct", "moonshotai/moonlight-16b-a3b-instruct:free", 8192), ("DeepSeek: R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192), ("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192), ("Google: Gemma 2 9B", "google/gemma-2-9b-it:free", 8192), ("Mistral: Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192), ("Microsoft: Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192), ("Microsoft: Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192), ("Meta: Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192), ("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192), ("Meta: Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000), ]}, # <8K Context Models {"category": "4K Context", "models": [ ("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096), ("Rogue Rose 103B v0.2", "sophosympatheia/rogue-rose-103b-v0.2:free", 4096), ("Toppy M 7B", "undi95/toppy-m-7b:free", 4096), ("Hugging Face: Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096), ("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096), ]}, # Vision-capable Models {"category": "Vision Models", "models": [ ("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000), ("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576), ("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576), ("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000), ("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000), ("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072), ("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072), ("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072), ("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072), ("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000), ("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000), ("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000), ("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000), ("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960), ("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000), ("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768), ("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768), ("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192), ("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096), ]}, ] # Flatten OpenRouter model list for easier access OPENROUTER_ALL_MODELS = [] for category in OPENROUTER_MODELS: for model in category["models"]: if model not in OPENROUTER_ALL_MODELS: # Avoid duplicates OPENROUTER_ALL_MODELS.append(model) # VISION MODELS - For tracking which models support images VISION_MODELS = { "OpenRouter": [model[0] for model in OPENROUTER_MODELS[-1]["models"]], # Last category is Vision Models "OpenAI": [ "gpt-4-vision-preview", "gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4-turbo-preview", "gpt-4-0125-preview", "gpt-4-1106-preview", "o1-preview", "o1-mini" ], "HuggingFace": [ "Qwen/Qwen2.5-VL-7B-Instruct", "Qwen/qwen2.5-vl-3b-instruct", "Qwen/qwen2.5-vl-32b-instruct", "Qwen/qwen2.5-vl-72b-instruct" ], "Groq": ["llama-3.2-11b-vision", "llama-3.2-90b-vision"], "Together": ["Llama-3.2-11B-Vision-Instruct", "Llama-3.2-90B-Vision-Instruct"], #"OVH": ["llava-next-mistral-7b", "qwen2.5-vl-72b-instruct"], #"Cerebras": [], "GoogleAI": ["gemini-1.5-pro", "gemini-1.0-pro", "gemini-1.5-flash", "gemini-2.0-pro", "gemini-2.5-pro"] } # POE MODELS POE_MODELS = { "claude_3_igloo": 4000, # Claude-3.5-Sonnet "claude_2_1_cedar": 4000, # Claude-3-Opus "claude_2_1_bamboo": 4000, # Claude-3-Sonnet "claude_3_haiku": 4000, # Claude-3-Haiku "claude_3_igloo_200k": 200000, # Claude-3.5-Sonnet-200k "claude_3_opus_200k": 200000, # Claude-3-Opus-200k "claude_3_sonnet_200k": 200000, # Claude-3-Sonnet-200k "claude_3_haiku_200k": 200000, # Claude-3-Haiku-200k "claude_2_short": 4000, # Claude-2 "a2_2": 100000, # Claude-2-100k "a2": 9000, # Claude-instant "a2_100k": 100000, # Claude-instant-100k "chinchilla": 4000, # GPT-3.5-Turbo "gpt3_5": 2000, # GPT-3.5-Turbo-Raw "chinchilla_instruct": 2000, # GPT-3.5-Turbo-Instruct "agouti": 16000, # ChatGPT-16k "gpt4_classic": 2000, # GPT-4-Classic "beaver": 4000, # GPT-4-Turbo "vizcacha": 128000, # GPT-4-Turbo-128k "gpt4_o": 4000, # GPT-4o "gpt4_o_128k": 128000, # GPT-4o-128k "gpt4_o_mini": 4000, # GPT-4o-Mini "gpt4_o_mini_128k": 128000, # GPT-4o-Mini-128k "acouchy": 8000, # Google-PaLM "code_llama_13b_instruct": 4000, # Code-Llama-13b "code_llama_34b_instruct": 4000, # Code-Llama-34b "upstage_solar_0_70b_16bit": 2000, # Solar-Mini "gemini_pro_search": 4000, # Gemini-1.5-Flash-Search "gemini_1_5_pro_1m": 2000000, # Gemini-1.5-Pro-2M } # Add vision-capable models to vision models list POE_VISION_MODELS = [ "claude_3_igloo", "claude_2_1_cedar", "claude_2_1_bamboo", "claude_3_haiku", "claude_3_igloo_200k", "claude_3_opus_200k", "claude_3_sonnet_200k", "claude_3_haiku_200k", "gpt4_o", "gpt4_o_128k", "gpt4_o_mini", "gpt4_o_mini_128k", "beaver", "vizcacha" ] VISION_MODELS["Poe"] = POE_VISION_MODELS # OPENAI MODELS OPENAI_MODELS = { "gpt-3.5-turbo": 16385, "gpt-3.5-turbo-0125": 16385, "gpt-3.5-turbo-1106": 16385, "gpt-3.5-turbo-instruct": 4096, "gpt-4": 8192, "gpt-4-0314": 8192, "gpt-4-0613": 8192, "gpt-4-turbo": 128000, "gpt-4-turbo-2024-04-09": 128000, "gpt-4-turbo-preview": 128000, "gpt-4-0125-preview": 128000, "gpt-4-1106-preview": 128000, "gpt-4o": 128000, "gpt-4o-2024-11-20": 128000, "gpt-4o-2024-08-06": 128000, "gpt-4o-2024-05-13": 128000, "gpt-4o-mini": 128000, "gpt-4o-mini-2024-07-18": 128000, "o1-preview": 128000, "o1-preview-2024-09-12": 128000, "o1-mini": 128000, "o1-mini-2024-09-12": 128000, } # HUGGINGFACE MODELS HUGGINGFACE_MODELS = { "microsoft/phi-3-mini-4k-instruct": 4096, "microsoft/Phi-3-mini-128k-instruct": 131072, "HuggingFaceH4/zephyr-7b-beta": 8192, "deepseek-ai/DeepSeek-Coder-V2-Instruct": 8192, "mistralai/Mistral-7B-Instruct-v0.3": 32768, "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": 32768, "microsoft/Phi-3.5-mini-instruct": 4096, "google/gemma-2-2b-it": 2048, "openai-community/gpt2": 1024, "microsoft/phi-2": 2048, "TinyLlama/TinyLlama-1.1B-Chat-v1.0": 2048, "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct": 2048, "VAGOsolutions/Llama-3.1-SauerkrautLM-8b-Instruct": 4096, "VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct": 4096, "openGPT-X/Teuken-7B-instruct-research-v0.4": 4096, "Qwen/Qwen2.5-7B-Instruct": 131072, "tiiuae/falcon-7b-instruct": 8192, "Qwen/QwQ-32B-preview": 32768, "Qwen/Qwen2.5-VL-7B-Instruct": 64000, "Qwen/qwen2.5-vl-3b-instruct": 64000, "Qwen/qwen2.5-vl-32b-instruct": 8192, "Qwen/qwen2.5-vl-72b-instruct": 131072, } # GROQ MODELS - We'll populate this dynamically DEFAULT_GROQ_MODELS = { "deepseek-r1-distill-llama-70b": 8192, "deepseek-r1-distill-qwen-32b": 8192, "gemma2-9b-it": 8192, "llama-3.1-8b-instant": 131072, "llama-3.2-1b-preview": 131072, "llama-3.2-3b-preview": 131072, "llama-3.2-11b-vision-preview": 131072, "llama-3.2-90b-vision-preview": 131072, "llama-3.3-70b-specdec": 131072, "llama-3.3-70b-versatile": 131072, "llama-guard-3-8b": 8192, "llama3-8b-8192": 8192, "llama3-70b-8192": 8192, "mistral-saba-24b": 32768, "qwen-2.5-32b": 32768, "qwen-2.5-coder-32b": 32768, "qwen-qwq-32b": 32768, "playai-tts": 4096, # Including TTS models but setting reasonable context limits "playai-tts-arabic": 4096, "distil-whisper-large-v3-en": 4096, "whisper-large-v3": 4096, "whisper-large-v3-turbo": 4096 } # COHERE MODELS COHERE_MODELS = { "command-r-plus-08-2024": 131072, "command-r-plus-04-2024": 131072, "command-r-plus": 131072, "command-r-08-2024": 131072, "command-r-03-2024": 131072, "command-r": 131072, "command": 4096, "command-nightly": 131072, "command-light": 4096, "command-light-nightly": 4096, "c4ai-aya-expanse-8b": 8192, "c4ai-aya-expanse-32b": 131072, } # TOGETHER MODELS in the free tier TOGETHER_MODELS = { "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": 131072, "deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free": 8192, "meta-llama/Llama-Vision-Free": 8192, "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free": 8192, } # Add to the vision models list VISION_MODELS["Together"] = ["meta-llama/Llama-Vision-Free"] # OVH MODELS - OVH AI Endpoints (free beta) OVH_MODELS = { "ovh/codestral-mamba-7b-v0.1": 131072, "ovh/deepseek-r1-distill-llama-70b": 8192, "ovh/llama-3.1-70b-instruct": 131072, "ovh/llama-3.1-8b-instruct": 131072, "ovh/llama-3.3-70b-instruct": 131072, "ovh/llava-next-mistral-7b": 8192, "ovh/mistral-7b-instruct-v0.3": 32768, "ovh/mistral-nemo-2407": 131072, "ovh/mixtral-8x7b-instruct": 32768, "ovh/qwen2.5-coder-32b-instruct": 32768, "ovh/qwen2.5-vl-72b-instruct": 131072, } # CEREBRAS MODELS CEREBRAS_MODELS = { "llama3.1-8b": 8192, "llama-3.3-70b": 8192, } # GOOGLE AI MODELS GOOGLEAI_MODELS = { "gemini-1.0-pro": 32768, "gemini-1.5-flash": 1000000, "gemini-1.5-pro": 1000000, "gemini-2.0-pro": 2000000, "gemini-2.5-pro": 2000000, } # ANTHROPIC MODELS ANTHROPIC_MODELS = { "claude-3-7-sonnet-20250219": 128000, # Claude 3.7 Sonnet "claude-3-5-sonnet-20241022": 200000, # Claude 3.5 Sonnet "claude-3-5-haiku-20240307": 200000, # Claude 3.5 Haiku "claude-3-5-sonnet-20240620": 200000, # Claude 3.5 Sonnet 2024-06-20 "claude-3-opus-20240229": 200000, # Claude 3 Opus "claude-3-haiku-20240307": 200000, # Claude 3 Haiku "claude-3-sonnet-20240229": 200000, # Claude 3 Sonnet } # Add Anthropic to the vision models list VISION_MODELS["Anthropic"] = [ "claude-3-7-sonnet-20250219", "claude-3-5-sonnet-20241022", "claude-3-opus-20240229", "claude-3-sonnet-20240229", "claude-3-5-haiku-20240307", "claude-3-haiku-20240307" ] # Add all models with "vl", "vision", "visual" in their name to HF vision models for model_name in list(HUGGINGFACE_MODELS.keys()): if any(x in model_name.lower() for x in ["vl", "vision", "visual", "llava"]): if model_name not in VISION_MODELS["HuggingFace"]: VISION_MODELS["HuggingFace"].append(model_name) # ========================================================== # HELPER FUNCTIONS # ========================================================== def fetch_groq_models(): """Fetch available Groq models with proper error handling""" try: if not HAS_GROQ or not GROQ_API_KEY: logger.warning("Groq client not available or no API key. Using default model list.") return DEFAULT_GROQ_MODELS client = Groq(api_key=GROQ_API_KEY) models = client.models.list() # Create dictionary of model_id -> context size model_dict = {} for model in models.data: model_id = model.id # Map known context sizes or use a default if "llama-3" in model_id and "70b" in model_id: context_size = 131072 elif "llama-3" in model_id and "8b" in model_id: context_size = 131072 elif "mixtral" in model_id: context_size = 32768 elif "gemma" in model_id: context_size = 8192 elif "vision" in model_id: context_size = 131072 else: context_size = 8192 # Default assumption model_dict[model_id] = context_size # Ensure we have models by combining with defaults if not model_dict: return DEFAULT_GROQ_MODELS return {**DEFAULT_GROQ_MODELS, **model_dict} except Exception as e: logger.error(f"Error fetching Groq models: {e}") return DEFAULT_GROQ_MODELS # Initialize Groq models GROQ_MODELS = fetch_groq_models() def encode_image_to_base64(image_path): """Encode an image file to base64 string""" try: if isinstance(image_path, str): # File path as string with open(image_path, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode('utf-8') file_extension = image_path.split('.')[-1].lower() mime_type = f"image/{file_extension}" if file_extension in ["jpg", "jpeg"]: mime_type = "image/jpeg" elif file_extension == "png": mime_type = "image/png" elif file_extension == "webp": mime_type = "image/webp" return f"data:{mime_type};base64,{encoded_string}" elif hasattr(image_path, 'name'): # Handle Gradio file objects directly with open(image_path.name, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode('utf-8') file_extension = image_path.name.split('.')[-1].lower() mime_type = f"image/{file_extension}" if file_extension in ["jpg", "jpeg"]: mime_type = "image/jpeg" elif file_extension == "png": mime_type = "image/png" elif file_extension == "webp": mime_type = "image/webp" return f"data:{mime_type};base64,{encoded_string}" else: # Handle file object or other types logger.error(f"Unsupported image type: {type(image_path)}") return None except Exception as e: logger.error(f"Error encoding image: {str(e)}") return None def extract_text_from_file(file_path): """Extract text from various file types""" try: file_extension = file_path.split('.')[-1].lower() if file_extension == 'pdf': if HAS_PYPDF2: text = "" with open(file_path, 'rb') as file: pdf_reader = PyPDF2.PdfReader(file) for page_num in range(len(pdf_reader.pages)): page = pdf_reader.pages[page_num] text += page.extract_text() + "\n\n" return text else: return "PDF processing is not available (PyPDF2 not installed)" elif file_extension == 'md': with open(file_path, 'r', encoding='utf-8') as file: return file.read() elif file_extension == 'txt': with open(file_path, 'r', encoding='utf-8') as file: return file.read() else: return f"Unsupported file type: {file_extension}" except Exception as e: logger.error(f"Error extracting text from file: {str(e)}") return f"Error processing file: {str(e)}" def prepare_message_with_media(text, images=None, documents=None): """Prepare a message with text, images, and document content""" # If no media, return text only if not images and not documents: return text # Start with text content if documents and len(documents) > 0: # If there are documents, append their content to the text document_texts = [] for doc in documents: if doc is None: continue # Make sure to handle file objects properly doc_path = doc.name if hasattr(doc, 'name') else doc doc_text = extract_text_from_file(doc_path) if doc_text: document_texts.append(doc_text) # Add document content to text if document_texts: if not text: text = "Please analyze these documents:" else: text = f"{text}\n\nDocument content:\n\n" text += "\n\n".join(document_texts) # If no images, return text only if not images: return text # If we have images, create a multimodal content array content = [{"type": "text", "text": text or "Analyze this image:"}] # Add images if any if images: # Check if images is a list of image paths or file objects if isinstance(images, list): for img in images: if img is None: continue encoded_image = encode_image_to_base64(img) if encoded_image: content.append({ "type": "image_url", "image_url": {"url": encoded_image} }) else: # For single image or Gallery component logger.warning(f"Images is not a list: {type(images)}") # Try to handle as single image encoded_image = encode_image_to_base64(images) if encoded_image: content.append({ "type": "image_url", "image_url": {"url": encoded_image} }) return content def format_to_message_dict(history): """Convert history to proper message format""" messages = [] for item in history: if isinstance(item, dict) and "role" in item and "content" in item: # Already in the correct format messages.append(item) elif isinstance(item, list) and len(item) == 2: # Convert from old format [user_msg, ai_msg] human, ai = item if human: messages.append({"role": "user", "content": human}) if ai: messages.append({"role": "assistant", "content": ai}) return messages def process_uploaded_images(files): """Process uploaded image files""" file_paths = [] for file in files: if hasattr(file, 'name'): file_paths.append(file.name) return file_paths def filter_models(provider, search_term): """Filter models based on search term and provider""" if provider == "OpenRouter": all_models = [model[0] for model in OPENROUTER_ALL_MODELS] elif provider == "OpenAI": all_models = list(OPENAI_MODELS.keys()) elif provider == "HuggingFace": all_models = list(HUGGINGFACE_MODELS.keys()) elif provider == "Groq": all_models = list(GROQ_MODELS.keys()) elif provider == "Cohere": all_models = list(COHERE_MODELS.keys()) elif provider == "Together": all_models = list(TOGETHER_MODELS.keys()) elif provider == "OVH": all_models = list(OVH_MODELS.keys()) elif provider == "Cerebras": all_models = list(CEREBRAS_MODELS.keys()) elif provider == "GoogleAI": all_models = list(GOOGLEAI_MODELS.keys()) else: return [], None if not search_term: return all_models, all_models[0] if all_models else None filtered_models = [model for model in all_models if search_term.lower() in model.lower()] if filtered_models: return filtered_models, filtered_models[0] else: return all_models, all_models[0] if all_models else None def get_model_info(provider, model_choice): """Get model ID and context size based on provider and model name""" if provider == "OpenRouter": for name, model_id, ctx_size in OPENROUTER_ALL_MODELS: if name == model_choice: return model_id, ctx_size elif provider == "Poe": if model_choice in POE_MODELS: return model_choice, POE_MODELS[model_choice] elif provider == "OpenAI": if model_choice in OPENAI_MODELS: return model_choice, OPENAI_MODELS[model_choice] elif provider == "HuggingFace": if model_choice in HUGGINGFACE_MODELS: return model_choice, HUGGINGFACE_MODELS[model_choice] elif provider == "Groq": if model_choice in GROQ_MODELS: return model_choice, GROQ_MODELS[model_choice] elif provider == "Cohere": if model_choice in COHERE_MODELS: return model_choice, COHERE_MODELS[model_choice] elif provider == "Together": if model_choice in TOGETHER_MODELS: return model_choice, TOGETHER_MODELS[model_choice] elif provider == "Anthropic": if model_choice in ANTHROPIC_MODELS: return model_choice, ANTHROPIC_MODELS[model_choice] elif provider == "GoogleAI": if model_choice in GOOGLEAI_MODELS: return model_choice, GOOGLEAI_MODELS[model_choice] return None, 0 def update_context_display(provider, model_name): """Update context size display for the selected model""" _, ctx_size = get_model_info(provider, model_name) return f"{ctx_size:,}" if ctx_size else "Unknown" def is_vision_model(provider, model_name): """Check if a model supports vision/images""" # Safety check for None model name if model_name is None: return False if provider in VISION_MODELS: if model_name in VISION_MODELS[provider]: return True # Also check for common vision indicators in model names try: if any(x in model_name.lower() for x in ["vl", "vision", "visual", "llava", "gemini"]): return True except AttributeError: # In case model_name is not a string or has no lower method return False return False def update_model_info(provider, model_name): """Generate HTML info display for the selected model""" model_id, ctx_size = get_model_info(provider, model_name) if not model_id: return "

Model information not available

" # Check if this is a vision model is_vision = is_vision_model(provider, model_name) vision_badge = 'Vision' if is_vision else '' # For OpenRouter, show the model ID model_id_html = f"

Model ID: {model_id}

" if provider == "OpenRouter" else "" # For others, the ID is the same as the name if provider != "OpenRouter": model_id_html = "" return f"""

{model_name} {vision_badge}

{model_id_html}

Context Size: {ctx_size:,} tokens

Provider: {provider}

{f'

Features: Supports image understanding

' if is_vision else ''}
""" # ========================================================== # API HANDLERS # ========================================================== def call_anthropic_api(payload, api_key_override=None): """Make a call to Anthropic API with error handling""" try: # Try to import Anthropic try: import anthropic from anthropic import Anthropic except ImportError: raise ImportError("Anthropic package not installed. Install it with: pip install anthropic") api_key = api_key_override if api_key_override else os.environ.get("ANTHROPIC_API_KEY", "") if not api_key: raise ValueError("Anthropic API key is required") client = Anthropic(api_key=api_key) # Extract parameters from payload model = payload.get("model", "claude-3-5-sonnet-20241022") messages = payload.get("messages", []) temperature = payload.get("temperature", 0.7) max_tokens = payload.get("max_tokens", 1000) # Format messages for Anthropic # Find system message if any system_prompt = None chat_messages = [] for msg in messages: if msg["role"] == "system": system_prompt = msg["content"] else: # Format content if isinstance(msg["content"], list): # Handle multimodal content (images) anthropic_content = [] for item in msg["content"]: if item["type"] == "text": anthropic_content.append({ "type": "text", "text": item["text"] }) elif item["type"] == "image_url": # Extract base64 from data URL if present image_url = item["image_url"]["url"] if image_url.startswith("data:"): # Extract media type and base64 data parts = image_url.split(",", 1) media_type = parts[0].split(":")[1].split(";")[0] base64_data = parts[1] anthropic_content.append({ "type": "image", "source": { "type": "base64", "media_type": media_type, "data": base64_data } }) else: # URL not supported by Anthropic yet anthropic_content.append({ "type": "text", "text": f"[Image URL: {image_url}]" }) chat_messages.append({ "role": msg["role"], "content": anthropic_content }) else: # Simple text content chat_messages.append({ "role": msg["role"], "content": msg["content"] }) # Make request to Anthropic response = client.messages.create( model=model, max_tokens=max_tokens, temperature=temperature, system=system_prompt, messages=chat_messages ) return response except Exception as e: logger.error(f"Anthropic API error: {str(e)}") raise e def call_poe_api(payload, api_key_override=None): """Make a call to Poe API with error handling""" try: # Try to import fastapi_poe try: import fastapi_poe as fp except ImportError: raise ImportError("fastapi_poe package not installed. Install it with: pip install fastapi_poe") api_key = api_key_override if api_key_override else os.environ.get("POE_API_KEY", "") if not api_key: raise ValueError("Poe API key is required") # Extract parameters from payload model = payload.get("model", "chinchilla") # Default to GPT-3.5-Turbo messages = payload.get("messages", []) # Convert messages to Poe format poe_messages = [] for msg in messages: role = msg["role"] content = msg["content"] # Skip system messages as Poe doesn't support them directly if role == "system": continue # Convert content format if isinstance(content, list): # Handle multimodal content (images) text_parts = [] for item in content: if item["type"] == "text": text_parts.append(item["text"]) # For images, we'll need to extract and handle them separately # This is a simplified approach - in reality, you'd need to handle images properly content = "\n".join(text_parts) # Add message to Poe messages poe_messages.append(fp.ProtocolMessage(role=role, content=content)) # Make synchronous request to Poe response_content = "" for partial in fp.get_bot_response_sync(messages=poe_messages, bot_name=model, api_key=api_key): if hasattr(partial, "text"): response_content += partial.text # Create a response object with a structure similar to other APIs response = { "id": f"poe-{int(time.time())}", "choices": [ { "message": { "role": "assistant", "content": response_content } } ] } return response except Exception as e: logger.error(f"Poe API error: {str(e)}") raise e def call_openrouter_api(payload, api_key_override=None): """Make a call to OpenRouter API with error handling""" try: api_key = api_key_override if api_key_override else OPENROUTER_API_KEY if not api_key: raise ValueError("OpenRouter API key is required") response = requests.post( "https://openrouter.ai/api/v1/chat/completions", headers={ "Content-Type": "application/json", "Authorization": f"Bearer {api_key}", "HTTP-Referer": "https://huggingface.co/spaces/cstr/CrispChat" }, json=payload, timeout=180 # Longer timeout for document processing ) return response except requests.RequestException as e: logger.error(f"OpenRouter API request error: {str(e)}") raise e def call_openai_api(payload, api_key_override=None): """Make a call to OpenAI API with error handling""" try: if not HAS_OPENAI: raise ImportError("OpenAI package not installed") api_key = api_key_override if api_key_override else OPENAI_API_KEY if not api_key: raise ValueError("OpenAI API key is required") client = openai.OpenAI(api_key=api_key) # Extract parameters from payload model = payload.get("model", "gpt-3.5-turbo") messages = payload.get("messages", []) temperature = payload.get("temperature", 0.7) max_tokens = payload.get("max_tokens", 1000) stream = payload.get("stream", False) top_p = payload.get("top_p", 0.9) presence_penalty = payload.get("presence_penalty", 0) frequency_penalty = payload.get("frequency_penalty", 0) # Handle response format if specified response_format = None if payload.get("response_format") == "json_object": response_format = {"type": "json_object"} # Create completion response = client.chat.completions.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, stream=stream, top_p=top_p, presence_penalty=presence_penalty, frequency_penalty=frequency_penalty, response_format=response_format ) return response except Exception as e: logger.error(f"OpenAI API error: {str(e)}") raise e def call_huggingface_api(payload, api_key_override=None): """Make a call to HuggingFace API with error handling""" try: if not HAS_HF: raise ImportError("HuggingFace hub not installed") api_key = api_key_override if api_key_override else HF_API_KEY # Extract parameters from payload model_id = payload.get("model", "mistralai/Mistral-7B-Instruct-v0.3") messages = payload.get("messages", []) temperature = payload.get("temperature", 0.7) max_tokens = payload.get("max_tokens", 500) # Create a prompt from messages prompt = "" for msg in messages: role = msg["role"].upper() content = msg["content"] # Handle multimodal content if isinstance(content, list): text_parts = [] for item in content: if item["type"] == "text": text_parts.append(item["text"]) content = "\n".join(text_parts) prompt += f"{role}: {content}\n" prompt += "ASSISTANT: " # Create client with or without API key client = InferenceClient(token=api_key) if api_key else InferenceClient() # Generate response response = client.text_generation( prompt, model=model_id, max_new_tokens=max_tokens, temperature=temperature, repetition_penalty=1.1 ) return {"generated_text": str(response)} except Exception as e: logger.error(f"HuggingFace API error: {str(e)}") raise e def call_groq_api(payload, api_key_override=None): """Make a call to Groq API with error handling""" try: if not HAS_GROQ: raise ImportError("Groq client not installed") api_key = api_key_override if api_key_override else GROQ_API_KEY if not api_key: raise ValueError("Groq API key is required") client = Groq(api_key=api_key) # Extract parameters from payload model = payload.get("model", "llama-3.1-8b-instant") # Clean up messages - remove any unexpected properties messages = [] for msg in payload.get("messages", []): clean_msg = { "role": msg["role"], "content": msg["content"] } messages.append(clean_msg) # Basic parameters groq_payload = { "model": model, "messages": messages, "temperature": payload.get("temperature", 0.7), "max_tokens": payload.get("max_tokens", 1000), "stream": payload.get("stream", False), "top_p": payload.get("top_p", 0.9) } # Create completion response = client.chat.completions.create(**groq_payload) return response except Exception as e: logger.error(f"Groq API error: {str(e)}") raise e def call_cohere_api(payload, api_key_override=None): """Make a call to Cohere API with error handling""" try: if not HAS_COHERE: raise ImportError("Cohere package not installed") api_key = api_key_override if api_key_override else COHERE_API_KEY if not api_key: raise ValueError("Cohere API key is required") client = cohere.ClientV2(api_key=api_key) # Extract parameters from payload model = payload.get("model", "command-r-plus") messages = payload.get("messages", []) temperature = payload.get("temperature", 0.7) max_tokens = payload.get("max_tokens", 1000) # Create chat completion response = client.chat( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens ) return response except Exception as e: logger.error(f"Cohere API error: {str(e)}") raise e def extract_ai_response(result, provider): """Extract AI response based on provider format""" try: if provider == "OpenRouter": if isinstance(result, dict): if "choices" in result and len(result["choices"]) > 0: if "message" in result["choices"][0]: message = result["choices"][0]["message"] if message.get("reasoning") and not message.get("content"): reasoning = message.get("reasoning") lines = reasoning.strip().split('\n') for line in lines: if line and not line.startswith('I should') and not line.startswith('Let me'): return line.strip() for line in lines: if line.strip(): return line.strip() return message.get("content", "") elif "delta" in result["choices"][0]: return result["choices"][0]["delta"].get("content", "") elif provider == "OpenAI": if hasattr(result, "choices") and len(result.choices) > 0: return result.choices[0].message.content elif provider == "Anthropic": if hasattr(result, "content"): # Combine text from all content blocks full_text = "" for block in result.content: if block.type == "text": full_text += block.text return full_text return "No content returned from Anthropic" elif provider == "HuggingFace": return result.get("generated_text", "") elif provider == "Groq": if hasattr(result, "choices") and len(result.choices) > 0: return result.choices[0].message.content elif provider == "Cohere": # Specific handling for Cohere's response format if hasattr(result, "message") and hasattr(result.message, "content"): # Extract text from content items text_content = "" for content_item in result.message.content: if hasattr(content_item, "text") and content_item.text: text_content += content_item.text return text_content else: return "No response content from Cohere" elif provider == "Poe": if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0: return result["choices"][0]["message"]["content"] return "No response content from Poe" elif provider == "Together": # Handle response from Together's native client if hasattr(result, "choices") and len(result.choices) > 0: if hasattr(result.choices[0], "message") and hasattr(result.choices[0].message, "content"): return result.choices[0].message.content elif hasattr(result.choices[0], "delta") and hasattr(result.choices[0].delta, "content"): return result.choices[0].delta.content # Fallback return str(result) elif provider == "OVH": if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0: return result["choices"][0]["message"]["content"] elif provider == "Cerebras": if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0: return result["choices"][0]["message"]["content"] elif provider == "GoogleAI": if isinstance(result, dict) and "choices" in result and len(result["choices"]) > 0: return result["choices"][0]["message"]["content"] logger.error(f"Unexpected response structure from {provider}: {result}") return f"Error: Could not extract response from {provider} API result" except Exception as e: logger.error(f"Error extracting AI response: {str(e)}") return f"Error: {str(e)}" def call_together_api(payload, api_key_override=None): """Make a call to Together API with error handling using their native client""" try: # Import Together's native client # Note: This might need to be installed with: pip install together try: from together import Together except ImportError: raise ImportError("The Together Python package is not installed. Please install it with: pip install together") api_key = api_key_override if api_key_override else TOGETHER_API_KEY if not api_key: raise ValueError("Together API key is required") # Create the Together client client = Together(api_key=api_key) # Extract parameters from payload requested_model = payload.get("model", "") messages = payload.get("messages", []) temperature = payload.get("temperature", 0.7) max_tokens = payload.get("max_tokens", 1000) stream = payload.get("stream", False) # Use one of the free, serverless models free_models = [ "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo", "deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free", "meta-llama/Llama-Vision-Free", "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free" ] # Default to the first free model model = free_models[0] # Try to match a requested model with a free model if possible if requested_model: for free_model in free_models: if requested_model.lower() in free_model.lower() or free_model.lower() in requested_model.lower(): model = free_model break # Process messages for possible image content processed_messages = [] for msg in messages: role = msg["role"] content = msg["content"] # Handle multimodal content for vision models if isinstance(content, list) and "vision" in model.lower(): # Format according to Together's expected multimodal format parts = [] for item in content: if item["type"] == "text": parts.append({"type": "text", "text": item["text"]}) elif item["type"] == "image_url": parts.append({ "type": "image_url", "image_url": item["image_url"] }) processed_messages.append({"role": role, "content": parts}) else: # Regular text messages processed_messages.append({"role": role, "content": content}) # Create completion with Together's client response = client.chat.completions.create( model=model, messages=processed_messages, temperature=temperature, max_tokens=max_tokens, stream=stream ) return response except Exception as e: logger.error(f"Together API error: {str(e)}") raise e def call_ovh_api(payload, api_key_override=None): """Make a call to OVH AI Endpoints API with error handling""" try: # Extract parameters from payload model = payload.get("model", "ovh/llama-3.1-8b-instruct") messages = payload.get("messages", []) temperature = payload.get("temperature", 0.7) max_tokens = payload.get("max_tokens", 1000) headers = { "Content-Type": "application/json" } data = { "model": model, "messages": messages, "temperature": temperature, "max_tokens": max_tokens } # Use a try-except to handle DNS resolution errors and provide a more helpful message try: # Correct endpoint URL based on documentation response = requests.post( "https://endpoints.ai.cloud.ovh.net/v1/chat/completions", # Updated endpoint headers=headers, json=data, timeout=10 # Add timeout to avoid hanging ) if response.status_code != 200: raise ValueError(f"OVH API returned status code {response.status_code}: {response.text}") return response.json() except requests.exceptions.ConnectionError as e: raise ValueError(f"Connection error to OVH API. This may be due to network restrictions in the environment: {str(e)}") except Exception as e: logger.error(f"OVH API error: {str(e)}") raise e def call_cerebras_api(payload, api_key_override=None): """Make a call to Cerebras API with error handling""" try: # Extract parameters from payload requested_model = payload.get("model", "") # Map the full model name to the correct Cerebras model ID model_mapping = { "cerebras/llama-3.1-8b": "llama3.1-8b", "cerebras/llama-3.3-70b": "llama-3.3-70b", "llama-3.1-8b": "llama3.1-8b", "llama-3.3-70b": "llama-3.3-70b", "llama3.1-8b": "llama3.1-8b" } # Default to the 8B model model = "llama3.1-8b" # If the requested model matches any of our mappings, use that instead if requested_model in model_mapping: model = model_mapping[requested_model] elif "3.3" in requested_model or "70b" in requested_model.lower(): model = "llama-3.3-70b" messages = payload.get("messages", []) temperature = payload.get("temperature", 0.7) max_tokens = payload.get("max_tokens", 1000) # Try-except block for network issues try: headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key_override or os.environ.get('CEREBRAS_API_KEY', '')}" } data = { "model": model, "messages": messages, "temperature": temperature, "max_tokens": max_tokens } response = requests.post( "https://api.cloud.cerebras.ai/v1/chat/completions", headers=headers, json=data, timeout=30 # Increased timeout ) if response.status_code != 200: raise ValueError(f"Cerebras API returned status code {response.status_code}: {response.text}") return response.json() except requests.exceptions.RequestException as e: # More specific error handling for network issues if "NameResolution" in str(e): raise ValueError( "Unable to connect to the Cerebras API. This might be due to network " "restrictions in your environment. The API requires direct internet access. " "Please try a different provider or check your network settings." ) else: raise ValueError(f"Request to Cerebras API failed: {str(e)}") except Exception as e: logger.error(f"Cerebras API error: {str(e)}") raise e def call_googleai_api(payload, api_key_override=None): """Make a call to Google AI (Gemini) API with error handling""" try: api_key = api_key_override if api_key_override else GOOGLEAI_API_KEY if not api_key: raise ValueError("Google AI API key is required") # Use regular requests instead of the SDK since it might be missing gemini_api_url = "https://generativelanguage.googleapis.com/v1/models/gemini-1.5-pro:generateContent" # Extract parameters from payload messages = payload.get("messages", []) temperature = payload.get("temperature", 0.7) max_tokens = payload.get("max_tokens", 1000) # Convert to Google's format content_parts = [] # Add all messages for msg in messages: role = msg["role"] content = msg["content"] # Handle different roles if role == "system": # For system messages, we add it as part of the first user message continue elif role == "user": # For user messages, add as regular content if isinstance(content, str): content_parts.append({"text": content}) else: # Handle multimodal content for item in content: if item["type"] == "text": content_parts.append({"text": item["text"]}) # Form the request data data = { "contents": [{"parts": content_parts}], "generationConfig": { "temperature": temperature, "maxOutputTokens": max_tokens, "topP": payload.get("top_p", 0.95), } } headers = { "Content-Type": "application/json", "x-goog-api-key": api_key } # Make the request response = requests.post( gemini_api_url, headers=headers, json=data, timeout=30 ) if response.status_code != 200: error_msg = f"Google AI API error: {response.status_code} - {response.text}" logger.error(error_msg) raise ValueError(error_msg) # Parse response and convert to standard format result = response.json() text_content = "" # Extract text from response if "candidates" in result and len(result["candidates"]) > 0: candidate = result["candidates"][0] if "content" in candidate and "parts" in candidate["content"]: for part in candidate["content"]["parts"]: if "text" in part: text_content += part["text"] # Create a standardized response format return { "choices": [ { "message": { "role": "assistant", "content": text_content } } ] } except Exception as e: logger.error(f"Google AI API error: {str(e)}") raise e # ========================================================== # STREAMING HANDLERS # ========================================================== def openrouter_streaming_handler(response, history, message): """Handle streaming responses from OpenRouter""" try: updated_history = history + [{"role": "user", "content": message}] assistant_response = "" for line in response.iter_lines(): if not line: continue line = line.decode('utf-8') if not line.startswith('data: '): continue data = line[6:] if data.strip() == '[DONE]': break try: chunk = json.loads(data) if "choices" in chunk and len(chunk["choices"]) > 0: delta = chunk["choices"][0].get("delta", {}) if "content" in delta and delta["content"]: # Update the current response assistant_response += delta["content"] yield updated_history + [{"role": "assistant", "content": assistant_response}] except json.JSONDecodeError: logger.error(f"Failed to parse JSON from chunk: {data}") except Exception as e: logger.error(f"Error in streaming handler: {str(e)}") # Add error message to the current response yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}] def openai_streaming_handler(response, history, message): """Handle streaming responses from OpenAI""" try: updated_history = history + [{"role": "user", "content": message}] assistant_response = "" for chunk in response: if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None: content = chunk.choices[0].delta.content assistant_response += content yield updated_history + [{"role": "assistant", "content": assistant_response}] except Exception as e: logger.error(f"Error in OpenAI streaming handler: {str(e)}") # Add error message to the current response yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}] def groq_streaming_handler(response, history, message): """Handle streaming responses from Groq""" try: updated_history = history + [{"role": "user", "content": message}] assistant_response = "" for chunk in response: if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None: content = chunk.choices[0].delta.content assistant_response += content yield updated_history + [{"role": "assistant", "content": assistant_response}] except Exception as e: logger.error(f"Error in Groq streaming handler: {str(e)}") # Add error message to the current response yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}] def together_streaming_handler(response, history, message): """Handle streaming responses from Together""" try: updated_history = history + [{"role": "user", "content": message}] assistant_response = "" for chunk in response: if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None: content = chunk.choices[0].delta.content assistant_response += content yield updated_history + [{"role": "assistant", "content": assistant_response}] except Exception as e: logger.error(f"Error in Together streaming handler: {str(e)}") # Add error message to the current response yield updated_history + [{"role": "assistant", "content": f"Error during streaming: {str(e)}"}] # ========================================================== # MAIN FUNCTION TO ASK AI # ========================================================== def ask_ai(message, history, provider, model_choice, temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty, top_k, min_p, seed, top_a, stream_output, response_format, images, documents, reasoning_effort, system_message, transforms, api_key_override=None): """Enhanced AI query function with support for multiple providers""" # Validate input if not message.strip() and not images and not documents: return history # Create messages from chat history for API requests messages = format_to_message_dict(history) # Add system message if provided if system_message and system_message.strip(): # Remove any existing system message messages = [msg for msg in messages if msg.get("role") != "system"] # Add new system message at the beginning messages.insert(0, {"role": "system", "content": system_message.strip()}) # Prepare message with images and documents if any content = prepare_message_with_media(message, images, documents) # Add current message to API messages messages.append({"role": "user", "content": content}) # Common parameters for all providers common_params = { "temperature": temperature, "max_tokens": max_tokens, "top_p": top_p, "frequency_penalty": frequency_penalty, "presence_penalty": presence_penalty, "stream": stream_output } try: # Process based on provider if provider == "OpenRouter": # Get model ID from registry model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in OpenRouter" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build OpenRouter payload payload = { "model": model_id, "messages": messages, **common_params } # Add optional parameters if set if repetition_penalty != 1.0: payload["repetition_penalty"] = repetition_penalty if top_k > 0: payload["top_k"] = top_k if min_p > 0: payload["min_p"] = min_p if seed > 0: payload["seed"] = seed if top_a > 0: payload["top_a"] = top_a # Add response format if JSON is requested if response_format == "json_object": payload["response_format"] = {"type": "json_object"} # Add reasoning if selected if reasoning_effort != "none": payload["reasoning"] = { "effort": reasoning_effort } # Add transforms if selected if transforms: payload["transforms"] = transforms # Call OpenRouter API logger.info(f"Sending request to OpenRouter model: {model_id}") response = call_openrouter_api(payload, api_key_override) # Handle streaming response if stream_output and response.status_code == 200: # Set up generator for streaming updates def streaming_generator(): updated_history = history + [{"role": "user", "content": message}] assistant_response = "" for line in response.iter_lines(): if not line: continue line = line.decode('utf-8') if not line.startswith('data: '): continue data = line[6:] if data.strip() == '[DONE]': break try: chunk = json.loads(data) if "choices" in chunk and len(chunk["choices"]) > 0: delta = chunk["choices"][0].get("delta", {}) if "content" in delta and delta["content"]: # Update the current response assistant_response += delta["content"] # Return updated history with current response yield updated_history + [{"role": "assistant", "content": assistant_response}] except json.JSONDecodeError: logger.error(f"Failed to parse JSON from chunk: {data}") return streaming_generator() # Handle normal response elif response.status_code == 200: result = response.json() logger.info(f"Response content: {result}") # Extract AI response ai_response = extract_ai_response(result, provider) # Add response to history with proper format return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] # Handle error response else: error_message = f"Error: Status code {response.status_code}" try: response_data = response.json() error_message += f"\n\nDetails: {json.dumps(response_data, indent=2)}" except: error_message += f"\n\nResponse: {response.text}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] elif provider == "Poe": # Get model ID from registry model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in Poe" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build Poe payload payload = { "model": model_id, "messages": messages # Poe doesn't support most parameters directly } # Call Poe API logger.info(f"Sending request to Poe model: {model_id}") try: response = call_poe_api(payload, api_key_override) # Extract response ai_response = extract_ai_response(response, provider) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] except Exception as e: error_message = f"Poe API Error: {str(e)}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] elif provider == "Anthropic": # Get model ID from registry model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in Anthropic" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build Anthropic payload payload = { "model": model_id, "messages": messages, "temperature": temperature, "max_tokens": max_tokens } # Call Anthropic API logger.info(f"Sending request to Anthropic model: {model_id}") try: response = call_anthropic_api(payload, api_key_override) # Extract response ai_response = extract_ai_response(response, provider) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] except Exception as e: error_message = f"Anthropic API Error: {str(e)}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] elif provider == "OpenAI": # Process OpenAI similarly as above... # Get model ID from registry model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in OpenAI" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build OpenAI payload payload = { "model": model_id, "messages": messages, **common_params } # Add response format if JSON is requested if response_format == "json_object": payload["response_format"] = {"type": "json_object"} # Call OpenAI API logger.info(f"Sending request to OpenAI model: {model_id}") try: response = call_openai_api(payload, api_key_override) # Handle streaming response if stream_output: # Set up generator for streaming updates def streaming_generator(): updated_history = history + [{"role": "user", "content": message}] assistant_response = "" for chunk in response: if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None: content = chunk.choices[0].delta.content assistant_response += content yield updated_history + [{"role": "assistant", "content": assistant_response}] return streaming_generator() # Handle normal response else: ai_response = extract_ai_response(response, provider) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] except Exception as e: error_message = f"OpenAI API Error: {str(e)}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] elif provider == "HuggingFace": model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in HuggingFace" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build HuggingFace payload payload = { "model": model_id, "messages": messages, "temperature": temperature, "max_tokens": max_tokens } # Call HuggingFace API logger.info(f"Sending request to HuggingFace model: {model_id}") try: response = call_huggingface_api(payload, api_key_override) # Extract response ai_response = extract_ai_response(response, provider) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] except Exception as e: error_message = f"HuggingFace API Error: {str(e)}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] elif provider == "Groq": # Get model ID from registry model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in Groq" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build Groq payload payload = { "model": model_id, "messages": messages, "temperature": temperature, "max_tokens": max_tokens, "top_p": top_p, "stream": stream_output } # Call Groq API logger.info(f"Sending request to Groq model: {model_id}") try: response = call_groq_api(payload, api_key_override) # Handle streaming response if stream_output: # Add message to history updated_history = history + [{"role": "user", "content": message}] # Set up generator for streaming updates def streaming_generator(): assistant_response = "" for chunk in response: if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None: content = chunk.choices[0].delta.content assistant_response += content yield updated_history + [{"role": "assistant", "content": assistant_response}] return streaming_generator() # Handle normal response else: ai_response = extract_ai_response(response, provider) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] except Exception as e: error_message = f"Groq API Error: {str(e)}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] elif provider == "Cohere": # Get model ID from registry model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in Cohere" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build Cohere payload (doesn't support streaming the same way) payload = { "model": model_id, "messages": messages, "temperature": temperature, "max_tokens": max_tokens } # Call Cohere API logger.info(f"Sending request to Cohere model: {model_id}") try: response = call_cohere_api(payload, api_key_override) # Extract response ai_response = extract_ai_response(response, provider) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] except Exception as e: error_message = f"Cohere API Error: {str(e)}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] elif provider == "Together": # Get model ID from registry model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in Together" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build Together payload payload = { "model": model_id, "messages": messages, "temperature": temperature, "max_tokens": max_tokens, "stream": stream_output } # Call Together API logger.info(f"Sending request to Together model: {model_id}") try: response = call_together_api(payload, api_key_override) # Handle streaming response if stream_output: # Add message to history updated_history = history + [{"role": "user", "content": message}] # Set up generator for streaming updates def streaming_generator(): assistant_response = "" for chunk in response: if hasattr(chunk.choices[0].delta, "content") and chunk.choices[0].delta.content is not None: content = chunk.choices[0].delta.content assistant_response += content yield updated_history + [{"role": "assistant", "content": assistant_response}] return streaming_generator() # Handle normal response else: ai_response = extract_ai_response(response, provider) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] except Exception as e: error_message = f"Together API Error: {str(e)}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] elif provider == "OVH": # Get model ID from registry model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in OVH" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build OVH payload payload = { "model": model_id, "messages": messages, "temperature": temperature, "max_tokens": max_tokens } # Call OVH API logger.info(f"Sending request to OVH model: {model_id}") try: response = call_ovh_api(payload) # Extract response ai_response = extract_ai_response(response, provider) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] except Exception as e: error_message = f"OVH API Error: {str(e)}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] elif provider == "Cerebras": # Get model ID from registry model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in Cerebras" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build Cerebras payload payload = { "model": model_id, "messages": messages, "temperature": temperature, "max_tokens": max_tokens } # Call Cerebras API logger.info(f"Sending request to Cerebras model: {model_id}") try: response = call_cerebras_api(payload) # Extract response ai_response = extract_ai_response(response, provider) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] except Exception as e: error_message = f"Cerebras API Error: {str(e)}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] elif provider == "GoogleAI": # Get model ID from registry model_id, _ = get_model_info(provider, model_choice) if not model_id: error_message = f"Error: Model '{model_choice}' not found in GoogleAI" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Build GoogleAI payload payload = { "model": model_id, "messages": messages, "temperature": temperature, "max_tokens": max_tokens, "top_p": top_p } # Call GoogleAI API logger.info(f"Sending request to GoogleAI model: {model_id}") try: response = call_googleai_api(payload, api_key_override) # Extract response ai_response = extract_ai_response(response, provider) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": ai_response} ] except Exception as e: error_message = f"GoogleAI API Error: {str(e)}" logger.error(error_message) return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] else: error_message = f"Error: Unsupported provider '{provider}'" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] except Exception as e: error_message = f"Error: {str(e)}" logger.error(f"Exception during API call: {error_message}") return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] def clear_chat(): """Reset all inputs""" return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", [] # ========================================================== # UI CREATION # ========================================================== def create_app(): """Create the CrispChat Gradio application""" with gr.Blocks( title="CrispChat", css=""" .context-size { font-size: 0.9em; color: #666; margin-left: 10px; } footer { display: none !important; } .model-selection-row { display: flex; align-items: center; } .parameter-grid { display: grid; grid-template-columns: 1fr 1fr; gap: 10px; } .vision-badge { background-color: #4CAF50; color: white; padding: 3px 6px; border-radius: 3px; font-size: 0.8em; margin-left: 5px; } .provider-selection { margin-bottom: 10px; padding: 10px; border-radius: 5px; background-color: #f5f5f5; } """ ) as demo: gr.Markdown(""" # 🤖 CrispChat Chat with AI models from multiple providers: OpenRouter, OpenAI, HuggingFace, Groq, Cohere, Together, Anthropic, and Google AI. """) with gr.Row(): with gr.Column(scale=2): # Chatbot interface chatbot = gr.Chatbot( height=500, show_copy_button=True, show_label=False, avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg"), elem_id="chat-window", type="messages" # use the new format ) with gr.Row(): message = gr.Textbox( placeholder="Type your message here...", label="Message", lines=2, elem_id="message-input", scale=4 ) with gr.Row(): with gr.Column(scale=3): submit_btn = gr.Button("Send", variant="primary", elem_id="send-btn") with gr.Column(scale=1): clear_btn = gr.Button("Clear Chat", variant="secondary") # Container for conditionally showing image upload with gr.Row(visible=True) as image_upload_container: # Image upload with gr.Accordion("Upload Images (for vision models)", open=False): images = gr.File( label="Uploaded Images", file_types=["image"], file_count="multiple" ) image_upload_btn = gr.UploadButton( label="Upload Images", file_types=["image"], file_count="multiple" ) # Document upload with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False): documents = gr.File( label="Uploaded Documents", file_types=[".pdf", ".md", ".txt"], file_count="multiple" ) with gr.Column(scale=1): with gr.Group(elem_classes="provider-selection"): gr.Markdown("### Provider Selection") # Provider selection provider_choice = gr.Radio( choices=["OpenRouter", "OpenAI", "HuggingFace", "Groq", "Cohere", "Together", "Anthropic", "Poe", "GoogleAI"], value="OpenRouter", label="AI Provider" ) # API key input with separate fields for each provider with gr.Accordion("API Keys", open=False): gr.Markdown("Enter API keys directly or set them as environment variables") openrouter_api_key = gr.Textbox( placeholder="Enter OpenRouter API key", label="OpenRouter API Key", type="password", value=OPENROUTER_API_KEY if OPENROUTER_API_KEY else "" ) poe_api_key = gr.Textbox( placeholder="Enter Poe API key", label="Poe API Key", type="password", value=POE_API_KEY if POE_API_KEY else "" ) openai_api_key = gr.Textbox( placeholder="Enter OpenAI API key", label="OpenAI API Key", type="password", value=OPENAI_API_KEY if OPENAI_API_KEY else "" ) hf_api_key = gr.Textbox( placeholder="Enter HuggingFace API key", label="HuggingFace API Key", type="password", value=HF_API_KEY if HF_API_KEY else "" ) groq_api_key = gr.Textbox( placeholder="Enter Groq API key", label="Groq API Key", type="password", value=GROQ_API_KEY if GROQ_API_KEY else "" ) cohere_api_key = gr.Textbox( placeholder="Enter Cohere API key", label="Cohere API Key", type="password", value=COHERE_API_KEY if COHERE_API_KEY else "" ) together_api_key = gr.Textbox( placeholder="Enter Together API key", label="Together API Key", type="password", value=TOGETHER_API_KEY if TOGETHER_API_KEY else "" ) # Add Anthropic API key anthropic_api_key = gr.Textbox( placeholder="Enter Anthropic API key", label="Anthropic API Key", type="password", value=os.environ.get("ANTHROPIC_API_KEY", "") ) googleai_api_key = gr.Textbox( placeholder="Enter Google AI API key", label="Google AI API Key", type="password", value=GOOGLEAI_API_KEY if GOOGLEAI_API_KEY else "" ) with gr.Group(): gr.Markdown("### Model Selection") with gr.Row(elem_classes="model-selection-row"): model_search = gr.Textbox( placeholder="Search models...", label="", show_label=False ) # Provider-specific model dropdowns openrouter_model = gr.Dropdown( choices=[model[0] for model in OPENROUTER_ALL_MODELS], value=OPENROUTER_ALL_MODELS[0][0] if OPENROUTER_ALL_MODELS else None, label="OpenRouter Model", elem_id="openrouter-model-choice", visible=True ) # Add Poe model dropdown poe_model = gr.Dropdown( choices=list(POE_MODELS.keys()), value="chinchilla" if "chinchilla" in POE_MODELS else None, label="Poe Model", elem_id="poe-model-choice", visible=False ) openai_model = gr.Dropdown( choices=list(OPENAI_MODELS.keys()), value="gpt-3.5-turbo" if "gpt-3.5-turbo" in OPENAI_MODELS else None, label="OpenAI Model", elem_id="openai-model-choice", visible=False ) hf_model = gr.Dropdown( choices=list(HUGGINGFACE_MODELS.keys()), value="mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in HUGGINGFACE_MODELS else None, label="HuggingFace Model", elem_id="hf-model-choice", visible=False ) groq_model = gr.Dropdown( choices=list(GROQ_MODELS.keys()), value="llama-3.1-8b-instant" if "llama-3.1-8b-instant" in GROQ_MODELS else None, label="Groq Model", elem_id="groq-model-choice", visible=False ) cohere_model = gr.Dropdown( choices=list(COHERE_MODELS.keys()), value="command-r-plus" if "command-r-plus" in COHERE_MODELS else None, label="Cohere Model", elem_id="cohere-model-choice", visible=False ) together_model = gr.Dropdown( choices=list(TOGETHER_MODELS.keys()), value="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo" if "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo" in TOGETHER_MODELS else None, label="Together Model", elem_id="together-model-choice", visible=False ) # Add Anthropic model dropdown anthropic_model = gr.Dropdown( choices=list(ANTHROPIC_MODELS.keys()), value="claude-3-5-sonnet-20241022" if "claude-3-5-sonnet-20241022" in ANTHROPIC_MODELS else None, label="Anthropic Model", elem_id="anthropic-model-choice", visible=False ) googleai_model = gr.Dropdown( choices=list(GOOGLEAI_MODELS.keys()), value="gemini-1.5-pro" if "gemini-1.5-pro" in GOOGLEAI_MODELS else None, label="Google AI Model", elem_id="googleai-model-choice", visible=False ) context_display = gr.Textbox( value=update_context_display("OpenRouter", OPENROUTER_ALL_MODELS[0][0]), label="Context Size", interactive=False, elem_classes="context-size" ) with gr.Accordion("Generation Parameters", open=False): with gr.Group(elem_classes="parameter-grid"): temperature = gr.Slider( minimum=0.0, maximum=2.0, value=0.7, step=0.1, label="Temperature" ) max_tokens = gr.Slider( minimum=100, maximum=4000, value=1000, step=100, label="Max Tokens" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Top P" ) frequency_penalty = gr.Slider( minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty" ) presence_penalty = gr.Slider( minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Presence Penalty" ) reasoning_effort = gr.Radio( ["none", "low", "medium", "high"], value="none", label="Reasoning Effort (OpenRouter)" ) with gr.Accordion("Advanced Options", open=False): with gr.Row(): with gr.Column(): repetition_penalty = gr.Slider( minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Repetition Penalty" ) top_k = gr.Slider( minimum=1, maximum=100, value=40, step=1, label="Top K" ) min_p = gr.Slider( minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Min P" ) with gr.Column(): seed = gr.Number( value=0, label="Seed (0 for random)", precision=0 ) top_a = gr.Slider( minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Top A" ) stream_output = gr.Checkbox( label="Stream Output", value=False ) with gr.Row(): response_format = gr.Radio( ["default", "json_object"], value="default", label="Response Format" ) gr.Markdown(""" * **json_object**: Forces the model to respond with valid JSON only. * Only available on certain models - check model support. """) # Custom instructing options with gr.Accordion("Custom Instructions", open=False): system_message = gr.Textbox( placeholder="Enter a system message to guide the model's behavior...", label="System Message", lines=3 ) transforms = gr.CheckboxGroup( ["prompt_optimize", "prompt_distill", "prompt_compress"], label="Prompt Transforms (OpenRouter specific)" ) gr.Markdown(""" * **prompt_optimize**: Improve prompt for better responses. * **prompt_distill**: Compress prompt to use fewer tokens without changing meaning. * **prompt_compress**: Aggressively compress prompt to fit larger contexts. """) # Add a model information section with gr.Accordion("About Selected Model", open=False): model_info_display = gr.HTML( value=update_model_info("OpenRouter", OPENROUTER_ALL_MODELS[0][0]) ) is_vision_indicator = gr.Checkbox( label="Supports Images", value=is_vision_model("OpenRouter", OPENROUTER_ALL_MODELS[0][0]), interactive=False ) # Add usage instructions with gr.Accordion("Usage Instructions", open=False): gr.Markdown(""" ## Basic Usage 1. Type your message in the input box 2. Select a provider and model 3. Click "Send" or press Enter ## Working with Files - **Images**: Upload images to use with vision-capable models - **Documents**: Upload PDF, Markdown, or text files to analyze their content ## Provider Information - **OpenRouter**: Free access to various models with context window sizes up to 2M tokens - **OpenAI**: Requires an API key, includes GPT-3.5 and GPT-4 models - **HuggingFace**: Direct access to open models, some models require API key - **Groq**: High-performance inference, requires API key - **Cohere**: Specialized in language understanding, requires API key - **Together**: Access to high-quality open models, requires API key - **Anthropic**: Claude models with strong reasoning capabilities, requires API key - **GoogleAI**: Google's Gemini models, requires API key ## Advanced Parameters - **Temperature**: Controls randomness (higher = more creative, lower = more deterministic) - **Max Tokens**: Maximum length of the response - **Top P**: Nucleus sampling threshold (higher = consider more tokens) - **Reasoning Effort**: Some models can show their reasoning process (OpenRouter only) """) # Add a footer with version info footer_md = gr.Markdown(""" --- ### CrispChat v1.2 Built with ❤️ using Gradio and multiple AI provider APIs | Context sizes shown next to model names """) # Define event handlers def toggle_model_dropdowns(provider): """Show/hide model dropdowns based on provider selection""" return { openrouter_model: gr.update(visible=(provider == "OpenRouter")), openai_model: gr.update(visible=(provider == "OpenAI")), hf_model: gr.update(visible=(provider == "HuggingFace")), groq_model: gr.update(visible=(provider == "Groq")), cohere_model: gr.update(visible=(provider == "Cohere")), together_model: gr.update(visible=(provider == "Together")), anthropic_model: gr.update(visible=(provider == "Anthropic")), poe_model: gr.update(visible=(provider == "Poe")), googleai_model: gr.update(visible=(provider == "GoogleAI")) } def update_context_for_provider(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model): """Update context display based on selected provider and model""" if provider == "OpenRouter": return update_context_display(provider, openrouter_model) elif provider == "OpenAI": return update_context_display(provider, openai_model) elif provider == "HuggingFace": return update_context_display(provider, hf_model) elif provider == "Groq": return update_context_display(provider, groq_model) elif provider == "Cohere": return update_context_display(provider, cohere_model) elif provider == "Together": return update_context_display(provider, together_model) elif provider == "Anthropic": return update_context_display(provider, anthropic_model) elif provider == "Poe": return update_context_display(provider, poe_model) elif provider == "GoogleAI": return update_context_display(provider, googleai_model) return "Unknown" def update_model_info_for_provider(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model): """Update model info based on selected provider and model""" if provider == "OpenRouter": return update_model_info(provider, openrouter_model) elif provider == "OpenAI": return update_model_info(provider, openai_model) elif provider == "HuggingFace": return update_model_info(provider, hf_model) elif provider == "Groq": return update_model_info(provider, groq_model) elif provider == "Cohere": return update_model_info(provider, cohere_model) elif provider == "Together": return update_model_info(provider, together_model) elif provider == "Anthropic": return update_model_info(provider, anthropic_model) elif provider == "Poe": return update_model_info(provider, poe_model) elif provider == "GoogleAI": return update_model_info(provider, googleai_model) return "

Model information not available

" def update_vision_indicator(provider, model_choice=None): """Update the vision capability indicator""" # Simplified - don't call get_current_model since it causes issues if model_choice is None: # Just check if the provider generally supports vision return provider in VISION_MODELS and len(VISION_MODELS[provider]) > 0 return is_vision_model(provider, model_choice) def update_image_upload_visibility(provider, model_choice=None): """Show/hide image upload based on model vision capabilities""" # Simplified is_vision = update_vision_indicator(provider, model_choice) return gr.update(visible=is_vision) # Search model function def search_openrouter_models(search_term): """Filter OpenRouter models based on search term""" all_models = [model[0] for model in OPENROUTER_ALL_MODELS] if not search_term: return gr.update(choices=all_models, value=all_models[0] if all_models else None) filtered_models = [model for model in all_models if search_term.lower() in model.lower()] if filtered_models: return gr.update(choices=filtered_models, value=filtered_models[0]) else: return gr.update(choices=all_models, value=all_models[0] if all_models else None) def search_openai_models(search_term): """Filter OpenAI models based on search term""" all_models = list(OPENAI_MODELS.keys()) if not search_term: return gr.update(choices=all_models, value="gpt-3.5-turbo" if "gpt-3.5-turbo" in all_models else all_models[0] if all_models else None) filtered_models = [model for model in all_models if search_term.lower() in model.lower()] if filtered_models: return gr.update(choices=filtered_models, value=filtered_models[0]) else: return gr.update(choices=all_models, value="gpt-3.5-turbo" if "gpt-3.5-turbo" in all_models else all_models[0] if all_models else None) def search_hf_models(search_term): """Filter HuggingFace models based on search term""" all_models = list(HUGGINGFACE_MODELS.keys()) if not search_term: default_model = "mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in all_models else all_models[0] if all_models else None return gr.update(choices=all_models, value=default_model) filtered_models = [model for model in all_models if search_term.lower() in model.lower()] if filtered_models: return gr.update(choices=filtered_models, value=filtered_models[0]) else: default_model = "mistralai/Mistral-7B-Instruct-v0.3" if "mistralai/Mistral-7B-Instruct-v0.3" in all_models else all_models[0] if all_models else None return gr.update(choices=all_models, value=default_model) def search_models_generic(search_term, model_dict, default_model=None): """Generic model search function to reduce code duplication""" all_models = list(model_dict.keys()) if not all_models: return gr.update(choices=[], value=None) if not search_term: return gr.update(choices=all_models, value=default_model if default_model in all_models else all_models[0]) filtered_models = [model for model in all_models if search_term.lower() in model.lower()] if filtered_models: return gr.update(choices=filtered_models, value=filtered_models[0]) else: return gr.update(choices=all_models, value=default_model if default_model in all_models else all_models[0]) def search_poe_models(search_term): """Filter Poe models based on search term""" return search_models_generic(search_term, POE_MODELS, "chinchilla") def search_groq_models(search_term): """Filter Groq models based on search term""" all_models = list(GROQ_MODELS.keys()) if not search_term: default_model = "llama-3.1-8b-instant" if "llama-3.1-8b-instant" in all_models else all_models[0] if all_models else None return gr.update(choices=all_models, value=default_model) filtered_models = [model for model in all_models if search_term.lower() in model.lower()] if filtered_models: return gr.update(choices=filtered_models, value=filtered_models[0]) else: default_model = "llama-3.1-8b-instant" if "llama-3.1-8b-instant" in all_models else all_models[0] if all_models else None return gr.update(choices=all_models, value=default_model) def search_cohere_models(search_term): """Filter Cohere models based on search term""" all_models = list(COHERE_MODELS.keys()) if not search_term: default_model = "command-r-plus" if "command-r-plus" in all_models else all_models[0] if all_models else None return gr.update(choices=all_models, value=default_model) filtered_models = [model for model in all_models if search_term.lower() in model.lower()] if filtered_models: return gr.update(choices=filtered_models, value=filtered_models[0]) else: default_model = "command-r-plus" if "command-r-plus" in all_models else all_models[0] if all_models else None return gr.update(choices=all_models, value=default_model) def search_together_models(search_term): """Filter Together models based on search term""" all_models = list(TOGETHER_MODELS.keys()) if not search_term: default_model = "meta-llama/Llama-3.1-8B-Instruct" if "meta-llama/Llama-3.1-8B-Instruct" in all_models else all_models[0] if all_models else None return gr.update(choices=all_models, value=default_model) filtered_models = [model for model in all_models if search_term.lower() in model.lower()] if filtered_models: return gr.update(choices=filtered_models, value=filtered_models[0]) else: default_model = "meta-llama/Llama-3.1-8B-Instruct" if "meta-llama/Llama-3.1-8B-Instruct" in all_models else all_models[0] if all_models else None return gr.update(choices=all_models, value=default_model) def search_anthropic_models(search_term): """Filter Anthropic models based on search term""" all_models = list(ANTHROPIC_MODELS.keys()) if not search_term: return gr.update(choices=all_models, value="claude-3-5-sonnet-20241022" if "claude-3-5-sonnet-20241022" in all_models else all_models[0] if all_models else None) filtered_models = [model for model in all_models if search_term.lower() in model.lower()] if filtered_models: return gr.update(choices=filtered_models, value=filtered_models[0]) else: return gr.update(choices=all_models, value="claude-3-5-sonnet-20241022" if "claude-3-5-sonnet-20241022" in all_models else all_models[0] if all_models else None) def search_googleai_models(search_term): """Filter GoogleAI models based on search term""" all_models = list(GOOGLEAI_MODELS.keys()) if not search_term: default_model = "gemini-1.5-pro" if "gemini-1.5-pro" in all_models else all_models[0] if all_models else None return gr.update(choices=all_models, value=default_model) filtered_models = [model for model in all_models if search_term.lower() in model.lower()] if filtered_models: return gr.update(choices=filtered_models, value=filtered_models[0]) else: default_model = "gemini-1.5-pro" if "gemini-1.5-pro" in all_models else all_models[0] if all_models else None return gr.update(choices=all_models, value=default_model) def get_current_model(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model): """Get the currently selected model based on provider""" if provider == "OpenRouter": return openrouter_model elif provider == "OpenAI": return openai_model elif provider == "HuggingFace": return hf_model elif provider == "Groq": return groq_model elif provider == "Cohere": return cohere_model elif provider == "Together": return together_model elif provider == "Anthropic": return anthropic_model elif provider == "Poe": return poe_model elif provider == "GoogleAI": return googleai_model return None # Process uploaded images image_upload_btn.upload( fn=lambda files: files, inputs=image_upload_btn, outputs=images ) # Set up provider selection event provider_choice.change( fn=toggle_model_dropdowns, inputs=provider_choice, outputs=[ openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model ] ).then( fn=update_context_for_provider, inputs=[ provider_choice, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model ], outputs=context_display ).then( fn=update_model_info_for_provider, inputs=[ provider_choice, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model ], outputs=model_info_display ).then( # Fix this with correct number of args using a simpler approach fn=lambda provider: update_vision_indicator(provider, None), inputs=provider_choice, outputs=is_vision_indicator ).then( # Same here fn=lambda provider: update_image_upload_visibility(provider, None), inputs=provider_choice, outputs=image_upload_container ) # Set up model search event - return model dropdown updates model_search.change( fn=lambda provider, search: [ search_openrouter_models(search) if provider == "OpenRouter" else gr.update(), search_openai_models(search) if provider == "OpenAI" else gr.update(), search_hf_models(search) if provider == "HuggingFace" else gr.update(), search_groq_models(search) if provider == "Groq" else gr.update(), search_cohere_models(search) if provider == "Cohere" else gr.update(), search_together_models(search) if provider == "Together" else gr.update(), search_anthropic_models(search) if provider == "Anthropic" else gr.update(), search_poe_models(search) if provider == "Poe" else gr.update(), search_googleai_models(search) if provider == "GoogleAI" else gr.update() ], inputs=[provider_choice, model_search], outputs=[ openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model ] ) # Set up model change events to update context display and model info openrouter_model.change( fn=lambda model: update_context_display("OpenRouter", model), inputs=openrouter_model, outputs=context_display ).then( fn=lambda model: update_model_info("OpenRouter", model), inputs=openrouter_model, outputs=model_info_display ).then( fn=lambda model: update_vision_indicator("OpenRouter", model), inputs=openrouter_model, outputs=is_vision_indicator ).then( fn=lambda model: update_image_upload_visibility("OpenRouter", model), inputs=openrouter_model, outputs=image_upload_container ) # Event handler for Poe model change poe_model.change( fn=lambda model: update_context_display("Poe", model), inputs=poe_model, outputs=context_display ).then( fn=lambda model: update_model_info("Poe", model), inputs=poe_model, outputs=model_info_display ).then( fn=lambda model: update_vision_indicator("Poe", model), inputs=poe_model, outputs=is_vision_indicator ).then( fn=lambda model: update_image_upload_visibility("Poe", model), inputs=poe_model, outputs=image_upload_container ) openai_model.change( fn=lambda model: update_context_display("OpenAI", model), inputs=openai_model, outputs=context_display ).then( fn=lambda model: update_model_info("OpenAI", model), inputs=openai_model, outputs=model_info_display ).then( fn=lambda model: update_vision_indicator("OpenAI", model), inputs=openai_model, outputs=is_vision_indicator ).then( fn=lambda model: update_image_upload_visibility("OpenAI", model), inputs=openai_model, outputs=image_upload_container ) hf_model.change( fn=lambda model: update_context_display("HuggingFace", model), inputs=hf_model, outputs=context_display ).then( fn=lambda model: update_model_info("HuggingFace", model), inputs=hf_model, outputs=model_info_display ).then( fn=lambda model: update_vision_indicator("HuggingFace", model), inputs=hf_model, outputs=is_vision_indicator ).then( fn=lambda model: update_image_upload_visibility("HuggingFace", model), inputs=hf_model, outputs=image_upload_container ) groq_model.change( fn=lambda model: update_context_display("Groq", model), inputs=groq_model, outputs=context_display ).then( fn=lambda model: update_model_info("Groq", model), inputs=groq_model, outputs=model_info_display ).then( fn=lambda model: update_vision_indicator("Groq", model), inputs=groq_model, outputs=is_vision_indicator ).then( fn=lambda model: update_image_upload_visibility("Groq", model), inputs=groq_model, outputs=image_upload_container ) cohere_model.change( fn=lambda model: update_context_display("Cohere", model), inputs=cohere_model, outputs=context_display ).then( fn=lambda model: update_model_info("Cohere", model), inputs=cohere_model, outputs=model_info_display ).then( fn=lambda model: update_vision_indicator("Cohere", model), inputs=cohere_model, outputs=is_vision_indicator ).then( fn=lambda model: update_image_upload_visibility("Cohere", model), inputs=cohere_model, outputs=image_upload_container ) together_model.change( fn=lambda model: update_context_display("Together", model), inputs=together_model, outputs=context_display ).then( fn=lambda model: update_model_info("Together", model), inputs=together_model, outputs=model_info_display ).then( fn=lambda model: update_vision_indicator("Together", model), inputs=together_model, outputs=is_vision_indicator ).then( fn=lambda model: update_image_upload_visibility("Together", model), inputs=together_model, outputs=image_upload_container ) anthropic_model.change( fn=lambda model: update_context_display("Anthropic", model), inputs=anthropic_model, outputs=context_display ).then( fn=lambda model: update_model_info("Anthropic", model), inputs=anthropic_model, outputs=model_info_display ).then( fn=lambda model: update_vision_indicator("Anthropic", model), inputs=anthropic_model, outputs=is_vision_indicator ).then( fn=lambda model: update_image_upload_visibility("Anthropic", model), inputs=anthropic_model, outputs=image_upload_container ) googleai_model.change( fn=lambda model: update_context_display("GoogleAI", model), inputs=googleai_model, outputs=context_display ).then( fn=lambda model: update_model_info("GoogleAI", model), inputs=googleai_model, outputs=model_info_display ).then( fn=lambda model: update_vision_indicator("GoogleAI", model), inputs=googleai_model, outputs=is_vision_indicator ).then( fn=lambda model: update_image_upload_visibility("GoogleAI", model), inputs=googleai_model, outputs=image_upload_container ) def handle_search(provider, search_term): """Handle search based on provider""" if provider == "OpenRouter": return search_openrouter_models(search_term) elif provider == "OpenAI": return search_openai_models(search_term) elif provider == "HuggingFace": return search_hf_models(search_term) elif provider == "Groq": return search_groq_models(search_term) elif provider == "Cohere": return search_cohere_models(search_term) elif provider == "Together": return search_together_models(search_term) elif provider == "Anthropic": return search_anthropic_models(search_term) elif provider == "GoogleAI": return search_googleai_models(search_term) return None # Set up submission event def submit_message(message, history, provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model, temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty, top_k, min_p, seed, top_a, stream_output, response_format, images, documents, reasoning_effort, system_message, transforms, openrouter_api_key, openai_api_key, hf_api_key, groq_api_key, cohere_api_key, together_api_key, anthropic_api_key, poe_api_key, googleai_api_key): """Submit message to selected provider and model""" # Get the currently selected model model_choice = get_current_model(provider, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model) # Check if model is selected if not model_choice: error_message = f"Error: No model selected for provider {provider}" return history + [ {"role": "user", "content": message}, {"role": "assistant", "content": error_message} ] # Select the appropriate API key based on the provider api_key_override = None if provider == "OpenRouter" and openrouter_api_key: api_key_override = openrouter_api_key elif provider == "OpenAI" and openai_api_key: api_key_override = openai_api_key elif provider == "HuggingFace" and hf_api_key: api_key_override = hf_api_key elif provider == "Groq" and groq_api_key: api_key_override = groq_api_key elif provider == "Cohere" and cohere_api_key: api_key_override = cohere_api_key elif provider == "Together" and together_api_key: api_key_override = together_api_key elif provider == "Anthropic" and anthropic_api_key: api_key_override = anthropic_api_key elif provider == "Poe" and poe_api_key: api_key_override = poe_api_key elif provider == "GoogleAI" and googleai_api_key: api_key_override = googleai_api_key # Call the ask_ai function with the appropriate parameters return ask_ai( message=message, history=history, provider=provider, model_choice=model_choice, temperature=temperature, max_tokens=max_tokens, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, repetition_penalty=repetition_penalty, top_k=top_k, min_p=min_p, seed=seed, top_a=top_a, stream_output=stream_output, response_format=response_format, images=images, documents=documents, reasoning_effort=reasoning_effort, system_message=system_message, transforms=transforms, api_key_override=api_key_override ) def clean_message(message): """Clean the message from style tags""" if isinstance(message, str): import re # Remove style tags message = re.sub(r'.*?', '', message) return message # Submit button click event submit_btn.click( fn=lambda *args: submit_message(clean_message(args[0]), *args[1:]), inputs=[ message, chatbot, provider_choice, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model, temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty, top_k, min_p, seed, top_a, stream_output, response_format, images, documents, reasoning_effort, system_message, transforms, openrouter_api_key, openai_api_key, hf_api_key, groq_api_key, cohere_api_key, together_api_key, anthropic_api_key, poe_api_key, googleai_api_key ], outputs=chatbot, show_progress="minimal", ).then( fn=lambda: "", # Clear message box after sending inputs=None, outputs=message ) # Also submit on Enter key message.submit( fn=submit_message, inputs=[ message, chatbot, provider_choice, openrouter_model, openai_model, hf_model, groq_model, cohere_model, together_model, anthropic_model, poe_model, googleai_model, temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty, top_k, min_p, seed, top_a, stream_output, response_format, images, documents, reasoning_effort, system_message, transforms, openrouter_api_key, openai_api_key, hf_api_key, groq_api_key, cohere_api_key, together_api_key, anthropic_api_key, poe_api_key, googleai_api_key ], outputs=chatbot, show_progress="minimal", ).then( fn=lambda: "", # Clear message box after sending inputs=None, outputs=message ) # Clear chat button clear_btn.click( fn=clear_chat, inputs=[], outputs=[ chatbot, message, images, documents, temperature, max_tokens, top_p, frequency_penalty, presence_penalty, repetition_penalty, top_k, min_p, seed, top_a, stream_output, response_format, reasoning_effort, system_message, transforms ] ) return demo # Launch the app if __name__ == "__main__": # Check API keys and print status missing_keys = [] if not OPENROUTER_API_KEY: logger.warning("WARNING: OPENROUTER_API_KEY environment variable is not set") missing_keys.append("OpenRouter") # Add Poe if not POE_API_KEY: logger.warning("WARNING: POE_API_KEY environment variable is not set") missing_keys.append("Poe") if not ANTHROPIC_API_KEY: logger.warning("WARNING: ANTHROPIC_API_KEY environment variable is not set") missing_keys.append("Anthropic") if not OPENAI_API_KEY: logger.warning("WARNING: OPENAI_API_KEY environment variable is not set") missing_keys.append("OpenAI") if not GROQ_API_KEY: logger.warning("WARNING: GROQ_API_KEY environment variable is not set") missing_keys.append("Groq") if not COHERE_API_KEY: logger.warning("WARNING: COHERE_API_KEY environment variable is not set") missing_keys.append("Cohere") if not TOGETHER_API_KEY: logger.warning("WARNING: TOGETHER_API_KEY environment variable is not set") missing_keys.append("Together") if not GOOGLEAI_API_KEY: logger.warning("WARNING: GOOGLEAI_API_KEY environment variable is not set") missing_keys.append("GoogleAI") if missing_keys: print("Missing API keys for the following providers:") for key in missing_keys: print(f"- {key}") print("\nYou can still use the application, but some providers will require API keys.") print("You can provide API keys through environment variables or use the API Key Override field.") if "OpenRouter" in missing_keys: print("\nNote: OpenRouter offers free tier access to many models!") #if "OVH" not in missing_keys and "Cerebras" not in missing_keys: # print("\nNote: OVH AI Endpoints (beta) and Cerebras offer free usage tiers!") print("\nStarting CrispChat application...") demo = create_app() demo.launch( server_name="0.0.0.0", server_port=7860, debug=True, show_error=True )