Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,20 @@ import yt_dlp
|
|
12 |
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
sys.path.append("./faster-whisper")
|
16 |
-
|
|
|
|
|
17 |
|
18 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
19 |
|
@@ -143,10 +155,49 @@ def save_transcription(transcription):
|
|
143 |
f.write(transcription)
|
144 |
return file_path
|
145 |
|
146 |
-
def transcribe_audio(input_source, batch_size, download_method, start_time=None, end_time=None, verbose=False):
|
147 |
try:
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
152 |
audio_path = download_audio(input_source, download_method)
|
@@ -160,19 +211,21 @@ def transcribe_audio(input_source, batch_size, download_method, start_time=None,
|
|
160 |
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
|
161 |
audio_path = trimmed_audio_path
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
transcription_time = end_time_perf - start_time_perf
|
168 |
-
real_time_factor = info.duration / transcription_time
|
169 |
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)
|
170 |
|
171 |
metrics_output = (
|
172 |
-
f"Language: {info.language}, Probability: {info.language_probability:.2f}\n"
|
173 |
-
f"Duration: {info.duration:.2f}s, Duration after VAD: {info.duration_after_vad:.2f}s\n"
|
174 |
f"Transcription time: {transcription_time:.2f} seconds\n"
|
175 |
-
f"Real-time factor: {real_time_factor:.2f}x\n"
|
176 |
f"Audio file size: {audio_file_size:.2f} MB\n"
|
177 |
)
|
178 |
|
@@ -182,7 +235,10 @@ def transcribe_audio(input_source, batch_size, download_method, start_time=None,
|
|
182 |
transcription = ""
|
183 |
|
184 |
for segment in segments:
|
185 |
-
|
|
|
|
|
|
|
186 |
transcription += transcription_segment
|
187 |
|
188 |
if verbose:
|
@@ -205,14 +261,15 @@ def transcribe_audio(input_source, batch_size, download_method, start_time=None,
|
|
205 |
os.remove(trimmed_audio_path)
|
206 |
except:
|
207 |
pass
|
208 |
-
|
209 |
iface = gr.Interface(
|
210 |
fn=transcribe_audio,
|
211 |
inputs=[
|
212 |
gr.Textbox(label="Audio Source (Upload, URL, or YouTube URL)"),
|
|
|
213 |
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"),
|
214 |
gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp"),
|
215 |
-
gr.Number(label="Start Time (seconds)", value=0),
|
216 |
gr.Number(label="End Time (seconds)", value=0),
|
217 |
gr.Checkbox(label="Verbose Output", value=False)
|
218 |
],
|
@@ -222,11 +279,11 @@ iface = gr.Interface(
|
|
222 |
gr.File(label="Download Transcription")
|
223 |
],
|
224 |
title="Multi-Model Transcription",
|
225 |
-
description="Transcribe audio using
|
226 |
examples=[
|
227 |
-
["https://www.youtube.com/watch?v=daQ_hqA6HDo", 16, "yt-dlp", 0, None, False],
|
228 |
-
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", 16, "ffmpeg", 0, 300, True],
|
229 |
-
["path/to/local/audio.mp3", 16, "yt-dlp", 60, 180, False]
|
230 |
],
|
231 |
cache_examples=False,
|
232 |
live=True
|
|
|
12 |
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
|
15 |
+
# Clone and install faster-whisper from GitHub
|
16 |
+
# (we should be able to do this in build.sh in a hf space)
|
17 |
+
try:
|
18 |
+
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
|
19 |
+
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
|
20 |
+
except subprocess.CalledProcessError as e:
|
21 |
+
print(f"Error during faster-whisper installation: {e}")
|
22 |
+
sys.exit(1)
|
23 |
+
|
24 |
+
# Add the faster-whisper directory to the Python path
|
25 |
sys.path.append("./faster-whisper")
|
26 |
+
|
27 |
+
from faster_whisper import WhisperModel
|
28 |
+
from faster_whisper.transcribe import BatchedInferencePipeline
|
29 |
|
30 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
31 |
|
|
|
155 |
f.write(transcription)
|
156 |
return file_path
|
157 |
|
158 |
+
def transcribe_audio(input_source, model_choice, batch_size, download_method, start_time=None, end_time=None, verbose=False):
|
159 |
try:
|
160 |
+
if model_choice == "faster-whisper":
|
161 |
+
model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8")
|
162 |
+
batched_model = BatchedInferencePipeline(model=model)
|
163 |
+
elif model_choice == "primeline/whisper-large-v3-german":
|
164 |
+
model_id = "primeline/whisper-large-v3-german"
|
165 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
166 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
167 |
+
)
|
168 |
+
model.to(device)
|
169 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
170 |
+
pipe = pipeline(
|
171 |
+
"automatic-speech-recognition",
|
172 |
+
model=model,
|
173 |
+
tokenizer=processor.tokenizer,
|
174 |
+
feature_extractor=processor.feature_extractor,
|
175 |
+
max_new_tokens=128,
|
176 |
+
chunk_length_s=30,
|
177 |
+
batch_size=batch_size,
|
178 |
+
return_timestamps=True,
|
179 |
+
torch_dtype=torch_dtype,
|
180 |
+
device=device,
|
181 |
+
)
|
182 |
+
elif model_choice == "openai/whisper-large-v3":
|
183 |
+
model_id = "openai/whisper-large-v3"
|
184 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
185 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
186 |
+
)
|
187 |
+
model.to(device)
|
188 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
189 |
+
pipe = pipeline(
|
190 |
+
"automatic-speech-recognition",
|
191 |
+
model=model,
|
192 |
+
tokenizer=processor.tokenizer,
|
193 |
+
feature_extractor=processor.feature_extractor,
|
194 |
+
torch_dtype=torch_dtype,
|
195 |
+
device=device,
|
196 |
+
)
|
197 |
+
else:
|
198 |
+
raise ValueError("Invalid model choice")
|
199 |
+
|
200 |
+
# Rest of the code remains the same
|
201 |
|
202 |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
203 |
audio_path = download_audio(input_source, download_method)
|
|
|
211 |
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
|
212 |
audio_path = trimmed_audio_path
|
213 |
|
214 |
+
if model_choice == "faster-whisper":
|
215 |
+
start_time_perf = time.time()
|
216 |
+
segments, info = batched_model.transcribe(audio_path, batch_size=batch_size, initial_prompt=None)
|
217 |
+
end_time_perf = time.time()
|
218 |
+
else:
|
219 |
+
start_time_perf = time.time()
|
220 |
+
result = pipe(audio_path)
|
221 |
+
segments = result["chunks"]
|
222 |
+
end_time_perf = time.time()
|
223 |
|
224 |
transcription_time = end_time_perf - start_time_perf
|
|
|
225 |
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)
|
226 |
|
227 |
metrics_output = (
|
|
|
|
|
228 |
f"Transcription time: {transcription_time:.2f} seconds\n"
|
|
|
229 |
f"Audio file size: {audio_file_size:.2f} MB\n"
|
230 |
)
|
231 |
|
|
|
235 |
transcription = ""
|
236 |
|
237 |
for segment in segments:
|
238 |
+
if model_choice == "faster-whisper":
|
239 |
+
transcription_segment = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
|
240 |
+
else:
|
241 |
+
transcription_segment = f"[{segment['timestamp'][0]:.2f}s -> {segment['timestamp'][1]:.2f}s] {segment['text']}\n"
|
242 |
transcription += transcription_segment
|
243 |
|
244 |
if verbose:
|
|
|
261 |
os.remove(trimmed_audio_path)
|
262 |
except:
|
263 |
pass
|
264 |
+
|
265 |
iface = gr.Interface(
|
266 |
fn=transcribe_audio,
|
267 |
inputs=[
|
268 |
gr.Textbox(label="Audio Source (Upload, URL, or YouTube URL)"),
|
269 |
+
gr.Dropdown(choices=["faster-whisper", "primeline/whisper-large-v3-german", "openai/whisper-large-v3"], label="Model Choice", value="faster-whisper"),
|
270 |
gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size"),
|
271 |
gr.Dropdown(choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"], label="Download Method", value="yt-dlp"),
|
272 |
+
gr.Number(label="Start Time (seconds)", value=0),
|
273 |
gr.Number(label="End Time (seconds)", value=0),
|
274 |
gr.Checkbox(label="Verbose Output", value=False)
|
275 |
],
|
|
|
279 |
gr.File(label="Download Transcription")
|
280 |
],
|
281 |
title="Multi-Model Transcription",
|
282 |
+
description="Transcribe audio using multiple models.",
|
283 |
examples=[
|
284 |
+
["https://www.youtube.com/watch?v=daQ_hqA6HDo", "faster-whisper", 16, "yt-dlp", 0, None, False],
|
285 |
+
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", "primeline/whisper-large-v3-german", 16, "ffmpeg", 0, 300, True],
|
286 |
+
["path/to/local/audio.mp3", "openai/whisper-large-v3", 16, "yt-dlp", 60, 180, False]
|
287 |
],
|
288 |
cache_examples=False,
|
289 |
live=True
|